A weak solution to quasilinear elliptic problems with perturbed gradient

被引:0
|
作者
Elhoussine Azroul
Farah Balaadich
机构
[1] Faculty of Sciences Dhar El Mehraz,Department of Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2021年 / 70卷
关键词
Quasilinear elliptic systems; Weak solutions; Sobolev space; Young measure; 35J60; 35D30; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider weak solutions to the Dirichlet problem -divA(x,Du-Θ(u))=finΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\text {div}\,A\big (x,Du-\varTheta (u)\big )=f\quad &{}\text {in}\;\varOmega ,\\ u=0\quad &{}\text {on}\;\partial \varOmega , \end{array} \right. \end{aligned}$$\end{document}where Θ:Rm→Mm×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta :{\mathbb {R}}^m\rightarrow {\mathbb {M}}^{m\times n}$$\end{document} is a continuous function assumed to satisfy a Lipschitz condition. Based on the theory of Young measures, we prove the existence result when f∈W-1,p′(Ω;Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in W^{-1,p'}(\varOmega ;{\mathbb {R}}^m)$$\end{document}.
引用
收藏
页码:151 / 166
页数:15
相关论文
共 50 条
  • [31] A NOTE ON QUASILINEAR ELLIPTIC SYSTEMS WITH L∞-DATA
    Balaadich, F.
    Azroul, E.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (01): : 16 - 24
  • [32] QUASILINEAR ELLIPTIC SYSTEMS WITH NONLINEAR PHYSICAL DATA
    Balaadich, Farah
    Azroul, Elhoussine
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2021, 33 (04) : 427 - 441
  • [33] Fractional elliptic problems with nonlinear gradient sources and measures
    João Vitor da Silva
    Pablo Ochoa
    Analía Silva
    Revista Matemática Complutense, 2022, 35 : 485 - 514
  • [34] Fractional elliptic problems with nonlinear gradient sources and measures
    da Silva, Joao Vitor
    Ochoa, Pablo
    Silva, Analia
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 485 - 514
  • [35] ON POSITIVE SOLUTION FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS WITH SIGN-CHANGING WEIGHTS
    He, Dianpeng
    Yang, Zuodong
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (02): : 267 - 274
  • [36] EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC DEGENERATE SYSTEMS WITH L-1 DATA AND NONLINEARITY IN THE GRADIENT
    Mouida, Abdelhaq
    Alaa, Noureddine
    Mesbahi, Salim
    Bouarifi, Walid
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [37] Gradient estimates via Riesz potentials and fractional maximal operators for quasilinear elliptic equations with applications
    Tran, Minh-Phuong
    Nguyen, Thanh-Nhan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69
  • [38] Existence of solutions for a quasilinear elliptic system with variable exponent
    Balaadich, Farah
    Azroul, Elhoussine
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 205 - 217
  • [39] On the Gradient Method for Some Nonlinear Elliptic Boundary Value Problems
    J. Karátson
    Acta Mathematica Hungarica, 2001, 93 : 115 - 133
  • [40] On the gradient method for some nonlinear elliptic boundary value problems
    Karátson, J
    ACTA MATHEMATICA HUNGARICA, 2001, 93 (1-2) : 115 - 133