A Combinatorial Approach to the Generalized Central Factorial Numbers

被引:0
作者
Takao Komatsu
José L. Ramírez
Diego Villamizar
机构
[1] Zhejiang Sci-Tech University,Department of Mathematical Sciences, School of Science
[2] Universidad Nacional de Colombia,Departamento de Matemáticas
[3] Aalto University,Department of Mathematics and Systems Analysis
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Central factorial numbers; set partitions; Bernoulli numbers; generating functions; Primary 11B73; Secondary 11B37; 05A15;
D O I
暂无
中图分类号
学科分类号
摘要
In the present article, we make use of the set partitions and the generating functions to give new combinatorial relations for the generalized central factorial numbers. In the second part of the paper, we present a relationship between the Bernoulli polynomials and the Stirling numbers with higher level.
引用
收藏
相关论文
共 10 条
[1]  
Broder AZ(1984)The Discrete Math. 49 241-259
[2]  
Butzer PL(1989)-Stirling numbers Numer. Funct. Anal. Optimiz. 10 419-488
[3]  
Schimidt M(1963)Central factorial numbers; their main properties and some applications Can. J. Math. 15 94-100
[4]  
Stark EL(2004)The divided central differences of zero J. Integer Seq. 7 5-318
[5]  
Vogt L(1974)Combinatorial interpretations of a generalization of the Genocchi numbers Duke Math. J. 41 305-264
[6]  
Carlitz L(2016)Interpretations combinatoires des nombres de Genocchi Period. Math. Hung. 73 259-undefined
[7]  
Riordan J(undefined)Connections between central factorial numbers and Bernoulli numbers undefined undefined undefined-undefined
[8]  
Domaratzki M(undefined)undefined undefined undefined undefined-undefined
[9]  
Dumont D(undefined)undefined undefined undefined undefined-undefined
[10]  
Merca M(undefined)undefined undefined undefined undefined-undefined