Resolution of the Wavefront Set Using General Continuous Wavelet Transforms

被引:0
作者
Jonathan Fell
Hartmut Führ
Felix Voigtlaender
机构
[1] RWTH Aachen University,Lehrstuhl C für Mathematik (Analysis)
[2] RWTH Aachen University,Lehrstuhl A für Mathematik
来源
Journal of Fourier Analysis and Applications | 2016年 / 22卷
关键词
Wavefront set; Square-integrable group representation; Continuous wavelet transform; Anisotropic wavelet systems; Shearlets; 42C15; 42C40; 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of characterizing the wavefront set of a tempered distribution u∈S′(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in \mathcal {S}'(\mathbb {R}^{d})$$\end{document} in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group H⊂GL(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\subset \mathrm{GL}(\mathbb {R}^{d})$$\end{document}. In this paper we develop a comprehensive and unified approach that allows to establish characterizations of the wavefront set in terms of rapid coefficient decay, for a large variety of dilation groups. For this purpose, we introduce two technical conditions on the dual action of the group H, called microlocal admissibility and (weak) cone approximation property. Essentially, microlocal admissibility sets up a systematic relationship between the scales in a wavelet dilated by h∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in H$$\end{document} on one side, and the matrix norm of h on the other side. The (weak) cone approximation property describes the ability of the wavelet system to adapt its frequency-side localization to arbitrary frequency cones. Together, microlocal admissibility and the weak cone approximation property allow the characterization of points in the wavefront set using multiple wavelets. Replacing the weak cone approximation by its stronger counterpart gives rise to single wavelet characterizations. We illustrate the scope of our results by discussing—in any dimension d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}—the similitude, diagonal and shearlet dilation groups, for which we verify the pertinent conditions. As a result, similitude and diagonal groups can be employed for multiple wavelet characterizations, whereas for the shearlet groups a single wavelet suffices. In particular, the shearlet characterization (previously only established for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}) holds in arbitrary dimensions.
引用
收藏
页码:997 / 1058
页数:61
相关论文
共 42 条
  • [1] Bernier D(1996)Wavelets from square-integrable representations SIAM J. Math. Anal. 27 594-608
  • [2] Taylor KF(2005)Continuous curvelet transform. I. Resolution of the wavefront set Appl. Comput. Harmon. Anal. 19 162-197
  • [3] Candès EJ(2013)Global wave-front sets of Banach, Fréchet and modulation space types, and pseudo-differential operators J. Differ. Equ. 254 3228-3258
  • [4] Donoho DL(2012)Isotropic shearlet analogs for Numer. Funct. Anal. Optim. 33 872-905
  • [5] Coriasco S(2009) and localization operators Appl. Comput. Harmon. Anal. 27 195-214
  • [6] Johansson K(2010)Shearlet coorbit spaces and associated Banach frames J. Fourier Anal. Appl. 16 340-364
  • [7] Toft J(2012)The continuous shearlet transform in arbitrary space dimensions Appl. Numer. Harmon. Anal. 86 105-144
  • [8] Czaja W(1996)Multivariate shearlet transform, shearlet coorbit spaces and their structural properties J. Math. Phys. 37 6353-6366
  • [9] King EJ(2000)Wavelet frames and admissibility in higher dimensions Cienc. Mat. (Havana) 18 179-190
  • [10] Dahlke S(2010)Continuous wavelets transforms from semidirect products Colloq. Math. 120 103-126