The Rest Mass of an Asymptotically Anti-de Sitter Spacetime

被引:0
作者
Po-Ning Chen
Pei-Ken Hung
Mu-Tao Wang
Shing-Tung Yau
机构
[1] Columbia University,Department of Mathematics
[2] University of California,Department of Mathematics
[3] Harvard University,Department of Mathematics
来源
Annales Henri Poincaré | 2017年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the space of Killing fields on the four dimensional AdS spacetime AdS3,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AdS^{3,1}$$\end{document}. Two subsets S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document} are identified: S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} (the spinor Killing fields) is constructed from imaginary Killing spinors, and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document} (the observer Killing fields) consists of all hypersurface orthogonal, future timelike unit Killing fields. When the cosmology constant vanishes, or in the Minkowski spacetime case, these two subsets have the same convex hull in the space of Killing fields. In presence of the cosmology constant, the convex hull of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {O}}$$\end{document} is properly contained in that of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}. This leads to two different notions of energy for an asymptotically AdS spacetime, the spinor energy and the observer energy. Chruściel et al. (J High Energy Phys 2006(11):084, 2006) proved the positivity of the spinor energy and derived important consequences among the related conserved quantities. We show that the positivity of the observer energy follows from the positivity of the spinor energy. A new notion called the “rest mass” of an asymptotically AdS spacetime is then defined by minimizing the observer energy and is shown to be evaluated in terms of the adjoint representation of the Lie algebra of Killing fields. It is proved that the rest mass has the desirable rigidity property that characterizes the AdS spacetime.
引用
收藏
页码:1493 / 1518
页数:25
相关论文
共 37 条
[1]  
Abbott LF(1982)Stability of gravity with a cosmological constant Nucl. Phys. B 195 76-96
[2]  
Deser S(2008)Rigidity and positivity of mass for asymptotically hyperbolic manifolds Ann. Henri Poincaré 9 1-33
[3]  
Andersson L(1984)Asymptotically anti-de Sitter space-times Class. Quantum Gravity 1 L39-L44
[4]  
Cai M(1986)The mass of an asymptotically flat manifold Commun. Pure Appl. Math. 39 661-693
[5]  
Galloway GJ(1988)On the invariant mass conjecture in general relativity Commun. Math. Phys. 120 233-248
[6]  
Ashtekar A(2003)The mass of asymptotically hyperbolic Riemannian manifolds Pacific J. Math. 212 231-264
[7]  
Magnon A(2004)The Trautman–Bondi mass of hyperboloidal initial data sets Adv. Theor. Math. Phys. 8 83-139
[8]  
Bartnik R(1983)The stability of gauged supergravity Nucl. Phys. B 218 173-190
[9]  
Chruściel PT(1985)Asymptotically anti-de Sitter spaces Commun. Math. Phys. 98 391-424
[10]  
Chruściel PT(2006)Positive energy-momentum theorem for AdS-asymptotically hyperbolic manifolds Ann. Henri Poincaré 7 975-1011