CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning

被引:0
作者
Ali Haisam Muhammad Rafid
Md. Toufikuzzaman
Mohammad Saifur Rahman
M. Sohel Rahman
机构
[1] Department of Computer Science and Engineering,
[2] Bangladesh University of Engineering and Technology,undefined
[3] Department of Computer Science and Engineering,undefined
[4] United International University,undefined
来源
BMC Bioinformatics | / 21卷
关键词
CRISPR; sgRNA; Machine learning; Deep learning; Cas9;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Sequence representation approaches for sequence-based protein prediction tasks that use deep learning
    Cui, Feifei
    Zhang, Zilong
    Zou, Quan
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2021, 20 (01) : 61 - 73
  • [22] Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review
    Sherkatghanad, Zeinab
    Abdar, Moloud
    Charlier, Jeremy
    Makarenkov, Vladimir
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [23] PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine
    Manavalan, Balachandran
    Shin, Tae H.
    Lee, Gwang
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [24] ACP-ML: A sequence-based method for anticancer peptide prediction
    Bian, Jilong
    Liu, Xuan
    Dong, Guanghui
    Hou, Chang
    Huang, Shan
    Zhang, Dandan
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [25] Seq2Topt: a sequence-based deep learning predictor of enzyme optimal temperature
    Qiu, Sizhe
    Hu, Bozhen
    Zhao, Jing
    Xu, Weiren
    Yang, Aidong
    [J]. BRIEFINGS IN BIOINFORMATICS, 2025, 26 (02)
  • [26] Machine Learning Models for Mycobacterium tuberculosis In Vitro Activity: Prediction and Target Visualization
    Lane, Thomas R.
    Urbina, Fabio
    Rank, Laura
    Gerlach, Jacob
    Riabova, Olga
    Lepioshkin, Alexander
    Kazakova, Elena
    Vocat, Anthony
    Tkachenko, Valery
    Cole, Stewart
    Makarov, Vadim
    Ekins, Sean
    [J]. MOLECULAR PHARMACEUTICS, 2022, 19 (02) : 674 - 689
  • [27] DRBpred: A sequence-based machine learning method to effectively predict DNA- and RNA-binding residues
    Ul Kabir, Md Wasi
    Alawad, Duaa Mohammad
    Pokhrel, Pujan
    Hoque, Md Tamjidul
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [28] Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction
    Min, Xiaoping
    Lu, Fengqing
    Li, Chunyan
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2021, 27 (15) : 1847 - 1855
  • [29] Prediction of GPCR activity using machine learning
    Yadav, Prakarsh
    Mollaei, Parisa
    Cao, Zhonglin
    Wang, Yuyang
    Farimani, Amir Barati
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 2564 - 2573
  • [30] Prediction of GPCR activity using machine learning
    Yadav, Prakarsh
    Mollaei, Parisa
    Cao, Zhonglin
    Wanga, Yuyang
    Farimani, Amir Barati
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 2564 - 2573