Serre's modularity conjecture (I)

被引:210
作者
Khare, Chandrashekhar [1 ]
Wintenberger, Jean-Pierre [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Strasbourg, Dept Math, F-67084 Strasbourg, France
基金
美国国家科学基金会;
关键词
REPRESENTATIONS; FORMS;
D O I
10.1007/s00222-009-0205-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is the first part of a work which proves Serre's modularity conjecture. We first prove the cases p not equal 2 and odd conductor, and p = 2 and weight 2, see Theorem 1.2, modulo Theorems 4.1 and 5.1. Theorems 4.1 and 5.1 are proven in the second part, see Khare and Wintenberger (Invent. Math., doi: 10.1007/s00222-009-0206-6, 2009). We then reduce the general case to a modularity statement for 2-adic lifts of modular mod 2 representations. This statement is now a theorem of Kisin (Invent. Math., doi: 10.1007/s00222-009-0207-5, 2009).
引用
收藏
页码:485 / 504
页数:20
相关论文
共 47 条
[1]  
[Anonymous], 1923, ABH MATH SEM HAMBURG
[2]  
Artin E., 1930, ABH MATH SEM HAMBURG, V8, P292
[3]   ON ARTIN L-SERIES WITH GENERAL GROUP CHARACTERS [J].
BRAUER, R .
ANNALS OF MATHEMATICS, 1947, 48 (02) :502-514
[4]  
Buzzard K, 2001, DUKE MATH J, V109, P283
[5]  
Buzzard K, 2000, MATH RES LETT, V7, P95
[6]   ON MODULO-L GALOIS REPRESENTATIONS ATTACHED TO MODULAR-FORMS [J].
CARAYOL, H .
DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) :785-801
[7]   COMPANION FORMS AND KODAIRA-SPENCER THEORY [J].
COLEMAN, RF ;
VOLOCH, JF .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :263-281
[8]  
DELIGNE P, 1974, ANN SCI ECOLE NORM S, V7, P507
[9]  
Deligne P., 1973, Lecture Notes in Math., V349, P501
[10]   The Taylor-Wiles construction and multiplicity one [J].
Diamond, F .
INVENTIONES MATHEMATICAE, 1997, 128 (02) :379-391