Integration of holomorphic Lie algebroids

被引:0
|
作者
Camille Laurent-Gengoux
Mathieu Stiénon
Ping Xu
机构
[1] Université de Poitiers,Département de mathématiques
[2] E.T.H. Zürich,Departement Mathematik
[3] Penn State University,Department of Mathematics
来源
Mathematische Annalen | 2009年 / 345卷
关键词
Vector Bundle; Poisson Structure; Holomorphic Vector Bundle; Poisson Manifold; Holomorphic Extension;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a holomorphic Lie algebroid is integrable if and only if its underlying real Lie algebroid is integrable. Thus the integrability criteria of Crainic–Fernandes (Theorem 4.1 in Crainic, Fernandes in Ann Math 2:157, 2003) do also apply in the holomorphic context without any modification. As a consequence we prove that a holomorphic Poisson manifold is integrable if and only if its real part or imaginary part is integrable as a real Poisson manifold.
引用
收藏
页码:895 / 923
页数:28
相关论文
共 50 条
  • [31] Polar homology and holomorphic bundles
    Khesin, B
    Rosly, A
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1784): : 1413 - 1427
  • [32] Holomorphic Extensions of Whitney Jets
    Rainer Brück
    Leonhard Frerick
    Results in Mathematics, 2003, 43 (1-2) : 56 - 73
  • [33] Holomorphic extension of the logistic sequence
    D. Yu. Kouznetsov
    Moscow University Physics Bulletin, 2010, 65 : 91 - 98
  • [34] Holomorphic extension of the logistic sequence
    Kouznetsov, D. Yu.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2010, 65 (02) : 91 - 98
  • [35] On localization in holomorphic equivariant cohomology
    Bruzzo, Ugo
    Rubtsov, Vladimir
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (04): : 1442 - 1454
  • [36] DEFORMATIONS OF HOLOMORPHIC POISSON MANIFOLDS
    Hitchin, Nigel
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) : 567 - 591
  • [37] Equivariant Holomorphic Morse Inequalities III: Non-isolated Fixed Points
    S. Wu
    W. Zhang
    Geometric & Functional Analysis GAFA, 1998, 8 : 149 - 178
  • [38] ALGEBRAIC LIE ALGEBRA BUNDLES AND DERIVATIONS OF LIE ALGEBRA BUNDLES
    Monica, M., V
    Rajendra, R.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2024, 35 : 95 - 107
  • [39] Holomorphic Extensions in Smooth Toric Surfaces
    Małgorzata Aneta Marciniak
    Journal of Geometric Analysis, 2012, 22 : 911 - 933
  • [40] Almost holomorphic extensions of ultradifferentiable functions
    Mats Andersson
    Bo Berndtsson
    Journal d’Analyse Mathématique, 2003, 89 : 337 - 365