Integration of holomorphic Lie algebroids

被引:0
|
作者
Camille Laurent-Gengoux
Mathieu Stiénon
Ping Xu
机构
[1] Université de Poitiers,Département de mathématiques
[2] E.T.H. Zürich,Departement Mathematik
[3] Penn State University,Department of Mathematics
来源
Mathematische Annalen | 2009年 / 345卷
关键词
Vector Bundle; Poisson Structure; Holomorphic Vector Bundle; Poisson Manifold; Holomorphic Extension;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a holomorphic Lie algebroid is integrable if and only if its underlying real Lie algebroid is integrable. Thus the integrability criteria of Crainic–Fernandes (Theorem 4.1 in Crainic, Fernandes in Ann Math 2:157, 2003) do also apply in the holomorphic context without any modification. As a consequence we prove that a holomorphic Poisson manifold is integrable if and only if its real part or imaginary part is integrable as a real Poisson manifold.
引用
收藏
页码:895 / 923
页数:28
相关论文
共 50 条