A posteriori error estimators for mixed finite element methods in linear elasticity

被引:0
|
作者
Marco Lonsing
Rüdiger Verfürth
机构
[1] Fakultät für Mathematik,Ruhr
来源
Numerische Mathematik | 2004年 / 97卷
关键词
Boundary Condition; Finite Element Method; Local Problem; Residual Error; Error Estimator;
D O I
暂无
中图分类号
学科分类号
摘要
Three a posteriori error estimators for PEERS and BDMS elements in linear elasticity are presented: one residual error estimator and two estimators based on the solution of auxiliary local problems with different boundary conditions. All of them are reliable and efficient with respect to the standard norm and furthermore robust for nearly incompressible materials.
引用
收藏
页码:757 / 778
页数:21
相关论文
共 50 条
  • [31] A hybrid a posteriori error estimator for conforming finite element approximations
    Cai, Difeng
    Cai, Zhiqiang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 320 - 340
  • [32] A posteriori error estimates of finite element method for parabolic problems
    Chen, YP
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (04) : 449 - 456
  • [33] An Introductory Review on A Posteriori Error Estimation in Finite Element Computations
    Chamoin, Ludovic
    Legoll, Frederic
    SIAM REVIEW, 2023, 65 (04) : 963 - 1028
  • [34] A POSTERIORI ERROR ESTIMATIONS FOR FINITE ELEMENT APPROXIMATIONS ON QUADRILATERAL MESHES
    Shynkarenko, Heorgiy
    Vovk, Olexandr
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2013, 3 (113): : 107 - 118
  • [35] Improved ZZ a posteriori error estimators for diffusion problems: Conforming linear elements
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 433 - 449
  • [36] Remarks on a posteriori error estimation for inaccurate finite element solutions
    W. Hackbusch
    J. U. Wappler
    Computing, 1998, 60 : 175 - 191
  • [37] A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem
    Lepe, Felipe
    Rivera, Gonzalo
    Vellojin, Jesus
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)
  • [38] Residual and Equilibrated Error Estimators for Magnetostatic Problems Solved by Finite Element Method
    Tang, Zuqi
    Le Menach, Yvonnick
    Creuse, Emmanuel
    Nicaise, Serge
    Piriou, Francis
    Nemitz, Nicolas
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (12) : 5715 - 5723
  • [39] Equilibrated Stress Reconstructions for Linear Elasticity Problems with Application to a Posteriori Error Analysis
    Riedlbeck, Rita
    Di Pietro, Daniele A.
    Ern, Alexandre
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 293 - 301
  • [40] A posteriori error estimate for the H(div) conforming mixed finite element for the coupled Darcy-Stokes system
    Chen, Wenbin
    Wang, Yanqiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 502 - 516