Predicting micropapillary or solid pattern of lung adenocarcinoma with CT-based radiomics, conventional radiographic and clinical features

被引:0
作者
Zhe Wang
Ning Zhang
Junhong Liu
Junfeng Liu
机构
[1] Hebei Medical University Fourth Hospital,Department of Radiology
[2] Hebei Medical University Fourth Hospital,undefined
来源
Respiratory Research | / 24卷
关键词
Lung adenocarcinoma; Radiomics; Prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] CT-based radiomics predictive model for spread through air space of IA stage lung adenocarcinoma
    Chen, Song
    Wang, Xiang
    Lin, Xu
    Li, Qingchu
    Xu, Shaochun
    Sun, Hongbiao
    Xiao, Yi
    Fan, Li
    Liu, Shiyuan
    ACTA RADIOLOGICA, 2025, : 477 - 486
  • [32] CT-based radiomics: A potential indicator of KRAS mutation in pulmonary adenocarcinoma
    Mahmoud, Menna Allah
    Wu, Sijun
    Su, Ruihua
    Liufu, Yuling
    Wen, Yanhua
    Pan, Xiaohuan
    Guan, Yubao
    TUMORI JOURNAL, 2025, 111 (02): : 147 - 157
  • [33] Predictive models of epidermal growth factor receptor mutation in lung adenocarcinoma using PET/CT-based radiomics features
    Deng, Zhikang
    Jin, Di
    Huang, Pei
    Wang, Changchun
    Deng, Yaohong
    Xu, Rong
    Fan, Bing
    MEDICAL PHYSICS, 2025,
  • [34] CT-based conventional radiomics and quantification of intratumoral heterogeneity for predicting benign and malignant renal lesions
    Yu, Shuanbao
    Yang, Yang
    Wang, Zeyuan
    Zheng, Haoke
    Cui, Jinshan
    Zhan, Yonghao
    Liu, Junxiao
    Li, Peng
    Fan, Yafeng
    Jia, Wendong
    Wang, Meng
    Chen, Bo
    Tao, Jin
    Li, Yuhong
    Zhang, Xuepei
    CANCER IMAGING, 2024, 24 (01)
  • [35] The value of CT-based radiomics in early assessment of chemotherapeutic effect in patients with advanced lung adenocarcinoma: a preliminary study
    Lin, Xi
    Wang, Huaming
    Chen, Jiayou
    Lu, Tao
    Zheng, Dechun
    Chen, Ying
    Chen, Yunbin
    ACTA RADIOLOGICA, 2023, 64 (02) : 524 - 532
  • [36] Deep-learning-based 3D super-resolution CT radiomics model: Predict the possibility of the micropapillary/solid component of lung adenocarcinoma
    Xing, Xiaowei
    Li, Liangping
    Sun, Mingxia
    Yang, Jiahu
    Zhu, Xinhai
    Peng, Fang
    Du, Jianzong
    Feng, Yue
    HELIYON, 2024, 10 (13)
  • [37] The Clinical Impact of Solid and Micropapillary Patterns in Resected Lung Adenocarcinoma
    Yanagawa, Naoki
    Shiono, Satoshi
    Abiko, Masami
    Katahira, Masato
    Osakabe, Mitsumasa
    Ogata, Shin-ya
    JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (11) : 1976 - 1983
  • [38] CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma
    Changsi Jiang
    Yan Luo
    Jialin Yuan
    Shuyuan You
    Zhiqiang Chen
    Mingxiang Wu
    Guangsuo Wang
    Jingshan Gong
    European Radiology, 2020, 30 : 4050 - 4057
  • [39] CT morphological features and histogram parameters to predict micropapillary or solid components in stage IA lung adenocarcinoma
    Chen, Qin
    Lin, Kaihe
    Zhang, Baoteng
    Jiang, Youqin
    Wu, Suying
    Lin, Jiajun
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [40] CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma
    Jiang, Changsi
    Luo, Yan
    Yuan, Jialin
    You, Shuyuan
    Chen, Zhiqiang
    Wu, Mingxiang
    Wang, Guangsuo
    Gong, Jingshan
    EUROPEAN RADIOLOGY, 2020, 30 (07) : 4050 - 4057