Parity and strong parity edge-colorings of graphs

被引:0
|
作者
Hsiang-Chun Hsu
Gerard J. Chang
机构
[1] National Taiwan University,Department of Mathematics
[2] National Taiwan University,Taida Institute for Mathematical Sciences
[3] National Center for Theoretical Sciences,undefined
来源
关键词
(Strong) parity edge-coloring; (Strong) parity edge-chromatic number; Hypercube embedding; Hopt-Stiefel function; Product of graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic numberp(G) (respectively, strong parity edge-chromatic number\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G)$\end{document}) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G) \ge p(G) \ge \chi'(G) \ge \Delta(G)$\end{document} for any graph G. In this paper, we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G)$\end{document} and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(K_{m,n})$\end{document} and p(Km,n) for m≤n with n≡0,−1,−2 (mod 2⌈lg m⌉).
引用
收藏
页码:427 / 436
页数:9
相关论文
共 50 条