Parity and strong parity edge-colorings of graphs

被引:0
|
作者
Hsiang-Chun Hsu
Gerard J. Chang
机构
[1] National Taiwan University,Department of Mathematics
[2] National Taiwan University,Taida Institute for Mathematical Sciences
[3] National Center for Theoretical Sciences,undefined
来源
关键词
(Strong) parity edge-coloring; (Strong) parity edge-chromatic number; Hypercube embedding; Hopt-Stiefel function; Product of graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic numberp(G) (respectively, strong parity edge-chromatic number\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G)$\end{document}) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G) \ge p(G) \ge \chi'(G) \ge \Delta(G)$\end{document} for any graph G. In this paper, we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G)$\end{document} and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(K_{m,n})$\end{document} and p(Km,n) for m≤n with n≡0,−1,−2 (mod 2⌈lg m⌉).
引用
收藏
页码:427 / 436
页数:9
相关论文
共 50 条
  • [31] On list edge-colorings of subcubic graphs
    Juvan, M
    Mohar, B
    Skrekovski, R
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 137 - 149
  • [32] ON GRAPHS CRITICAL WITH RESPECT TO EDGE-COLORINGS
    YAP, HP
    DISCRETE MATHEMATICS, 1981, 37 (2-3) : 289 - 296
  • [33] Interval edge-colorings of composition of graphs
    Tepanyan, H. H.
    Petrosyan, P. A.
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 368 - 374
  • [34] Compact cyclic edge-colorings of graphs
    Nadolski, Adam
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2407 - 2417
  • [35] EDGE-COLORINGS OF GRAPHS - A PROGRESS REPORT
    HILTON, AJW
    WILSON, RJ
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 241 - 249
  • [36] On Interval Edge-Colorings of Outerplanar Graphs
    Petrosyan, Petros A.
    ARS COMBINATORIA, 2017, 132 : 127 - 135
  • [37] A generalization of interval edge-colorings of graphs
    Petrosyan, P. A.
    Arakelyan, H. Z.
    Baghdasaryan, V. M.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (16) : 1827 - 1837
  • [38] CHANGE GRAPHS OF EDGE-COLORINGS OF PLANAR CUBIC GRAPHS
    KOTZIG, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 22 (01) : 26 - 30
  • [39] Edge-colorings of some large graphs on alphabets
    Gomez, J
    Escudero, M
    ARS COMBINATORIA, 1998, 49 : 49 - 55
  • [40] AVD edge-colorings of cubic Halin graphs
    Huang, Ningge
    Chen, Lily
    AIMS MATHEMATICS, 2023, 8 (11): : 27820 - 27839