Parity and strong parity edge-colorings of graphs

被引:0
|
作者
Hsiang-Chun Hsu
Gerard J. Chang
机构
[1] National Taiwan University,Department of Mathematics
[2] National Taiwan University,Taida Institute for Mathematical Sciences
[3] National Center for Theoretical Sciences,undefined
来源
关键词
(Strong) parity edge-coloring; (Strong) parity edge-chromatic number; Hypercube embedding; Hopt-Stiefel function; Product of graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic numberp(G) (respectively, strong parity edge-chromatic number\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G)$\end{document}) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G) \ge p(G) \ge \chi'(G) \ge \Delta(G)$\end{document} for any graph G. In this paper, we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G)$\end{document} and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(K_{m,n})$\end{document} and p(Km,n) for m≤n with n≡0,−1,−2 (mod 2⌈lg m⌉).
引用
收藏
页码:427 / 436
页数:9
相关论文
共 50 条
  • [1] Parity and strong parity edge-colorings of graphs
    Hsu, Hsiang-Chun
    Chang, Gerard J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (04) : 427 - 436
  • [2] On vertex-parity edge-colorings
    Borut Lužar
    Mirko Petruševski
    Riste Škrekovski
    Journal of Combinatorial Optimization, 2018, 35 : 373 - 388
  • [3] On vertex-parity edge-colorings
    Luzar, Borut
    Petrusevski, Mirko
    Skrekovski, Riste
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 373 - 388
  • [4] List Strong Edge-Colorings of Sparse Graphs
    Deng, Kecai
    Huang, Ningge
    Zhang, Haiyang
    Zhou, Xiangqian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (06)
  • [5] List Strong Edge-Colorings of Sparse Graphs
    Kecai Deng
    Ningge Huang
    Haiyang Zhang
    Xiangqian Zhou
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [6] EDGE-COLORINGS OF GRAPHS
    ANDERSEN, LD
    MATHEMATICA SCANDINAVICA, 1977, 40 (02) : 161 - 175
  • [7] Between proper and strong edge-colorings of subcubic graphs
    Hocquard, Herve
    Lajou, Dimitri
    Luzar, Borut
    JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 686 - 716
  • [8] Strong edge-colorings of planar graphs with small girth
    Guo, Yirong
    Zhang, Xia
    Zhang, Xinmiao
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 394
  • [9] Strong edge-colorings for k-degenerate graphs
    Yu, Gexin
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1815 - 1818
  • [10] Between Proper and Strong Edge-Colorings of Subcubic Graphs
    Hocquard, Herve
    Lajou, Dimitri
    Luzar, Borut
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 355 - 367