Existence of Homoclinic Solutions for a Class of Damped Vibration Problems

被引:0
|
作者
Huijuan Xu
Shan Jiang
Guanggang Liu
机构
[1] Liaocheng University,School of Mathematical Sciences
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
Homoclinic solutions; Damped vibration problems; Critical points; Palais–Smale condition; 34C37; 37J45; 47J30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of homoclinic solution for a class of damped vibration problem x¨(t)+(q(t)IN×N+B)x˙(t)+12q(t)B-A(t)x(t)+Hx(t,x(t))=f(t).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \ddot{x}(t)+(q(t)I_{N\times N}+B){\dot{x}}(t)+\left( \frac{1}{2} q(t)B-A(t)\right) x(t)+H_{x}(t,x(t))=f(t). \end{aligned}$$\end{document}For every k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {N}}$$\end{document}, we obtain the 2kT-periodic solution xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{k}$$\end{document} by a standard minimizing argument. By taking the limit of {xk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_{k}\}$$\end{document}, we get a solution x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{0}$$\end{document} of this problem. We prove that x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{0}$$\end{document} satisfies x0→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{0}\rightarrow 0$$\end{document} and x˙0→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{x}}_{0}\rightarrow 0$$\end{document} as t→±∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \pm \infty $$\end{document}, and therefore x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{0}$$\end{document} is a homoclinic solution of the problem.
引用
收藏
相关论文
共 50 条