Demixing in Isotropic Binary Mixtures of Rodlike Macromolecules

被引:0
|
作者
P. C. Hemmer
机构
[1] Norges Teknisk-naturvitenskapelige Universitet,Institutt for Fysikk
来源
Journal of Statistical Physics | 2000年 / 100卷
关键词
colloids; phase transitions; binary mixtures; hard rods;
D O I
暂无
中图分类号
学科分类号
摘要
A binary mixture of long rigid rods of diameters Di and lengths Li (i=1, 2) may demix into two isotropic phases, and we give necessary conditions on the molecular size parameters for this transition to exist. These conditions imply that the two diameters must be sufficiently unequal, D2/D1>(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tfrac{9}{7}$$ \end{document}+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tfrac{4}{7}$$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt 2 $$ \end{document})2, or D2/D1<(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tfrac{9}{7}$$ \end{document}+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tfrac{4}{7}$$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt 2 $$ \end{document})2, while the length ratio is limited to an interval f−(D2/D1)<L2/L1<f+(D2/D1). The functions f± are given explicitly.
引用
收藏
页码:3 / 11
页数:8
相关论文
共 50 条
  • [1] Demixing in isotropic binary mixtures of rodlike macromolecules
    Hemmer, PC
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (1-2) : 3 - 11
  • [2] APPLICATION OF PHOTON-CORRELATION SPECTROSCOPY TO THE ANALYSIS OF BINARY-MIXTURES OF SPHERICAL AND RODLIKE MACROMOLECULES
    MORENO, F
    CAGIGAL, MP
    GONZALEZ, F
    APPLIED OPTICS, 1986, 25 (22): : 4096 - 4101
  • [3] Demixing behavior of binary polymer mixtures
    Chicaroux, Andres Kulaguin
    Gorak, Andrzej
    Zeiner, Tim
    JOURNAL OF MOLECULAR LIQUIDS, 2015, 209 : 42 - 49
  • [4] Demixing in binary mixtures of anisometric colloids
    Wensink, HH
    Vroege, GJ
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (19) : S2015 - S2027
  • [5] Demixing in binary mixtures of hard hyperspheres
    Yuste, SB
    Santos, A
    de Haro, ML
    EUROPHYSICS LETTERS, 2000, 52 (02): : 158 - 164
  • [6] STRUCTURE FACTOR OF A SOLUTION OF CHARGED RODLIKE MACROMOLECULES IN THE ISOTROPIC-PHASE
    MAEDA, T
    MACROMOLECULES, 1991, 24 (10) : 2740 - 2747
  • [7] Quantum demixing in binary mixtures of dipolar bosons
    Jain, Piyush
    Boninsegni, Massimo
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [8] Observation of isotropic-isotropic demixing in colloidal platelet-sphere mixtures
    Chen, Mingfeng
    Li, Huawei
    Chen, Ying
    Mejia, Andres F.
    Wang, Xuezhen
    Cheng, Zhengdong
    SOFT MATTER, 2015, 11 (28) : 5775 - 5779
  • [9] Entropy-driven demixing in spherocylinder binary mixtures
    Bosetti, Hadrien
    Perera, Aurélien
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (2 I): : 021206 - 021201
  • [10] Entropy-driven demixing in spherocylinder binary mixtures
    Bosetti, H
    Perera, A
    PHYSICAL REVIEW E, 2001, 63 (02):