Gravitational waves from a holographic phase transition

被引:0
作者
Fëanor Reuben Ares
Mark Hindmarsh
Carlos Hoyos
Niko Jokela
机构
[1] University of Sussex,Department of Physics and Astronomy
[2] University of Helsinki,Department of Physics
[3] University of Helsinki,Helsinki Institute of Physics, PL 64, 00014
[4] Universidad de Oviedo,Department of Physics & Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA)
来源
Journal of High Energy Physics | / 2021卷
关键词
Gauge-gravity correspondence; Cosmology of Theories beyond the SM;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate first order phase transitions in a holographic setting of five-dimensional Einstein gravity coupled to a scalar field, constructing phase diagrams of the dual field theory at finite temperature. We scan over the two-dimensional parameter space of a simple bottom-up model and map out important quantities for the phase transition: the region where first order phase transitions take place; the latent heat, the transition strength parameter α, and the stiffness. We find that α is generically in the range 0.1 to 0.3, and is strongly correlated with the stiffness (the square of the sound speed in a barotropic fluid). Using the LISA Cosmology Working Group gravitational wave power spectrum model corrected for kinetic energy suppression at large α and non-conformal stiffness, we outline the observational prospects at the future space-based detectors LISA and TianQin. A TeV-scale hidden sector with a phase transition described by the model could be observable at both detectors.
引用
收藏
相关论文
共 242 条
  • [71] Quirós M(2014)undefined Phys. Rev. Lett. 112 062-undefined
  • [72] Agashe K(2019)undefined JCAP 12 045-undefined
  • [73] Du P(2020)undefined JCAP 05 012017-undefined
  • [74] Ekhterachian M(2017)undefined J. Phys. Conf. Ser. 840 046028-undefined
  • [75] Kumar S(2020)undefined Phys. Rev. D 101 086006-undefined
  • [76] Sundrum R(2020)undefined Phys. Rev. D 102 159-undefined
  • [77] Witten E(2002)undefined Nucl. Phys. B 631 041-undefined
  • [78] Bigazzi F(2001)undefined JHEP 08 024-undefined
  • [79] Caddeo A(2019)undefined JCAP 06 050-undefined
  • [80] Cotrone AL(2020)undefined JCAP 07 028-undefined