Development and validation of machine learning algorithms based on electrocardiograms for cardiovascular diagnoses at the population level

被引:8
作者
Kalmady, Sunil Vasu [1 ,2 ,3 ]
Salimi, Amir [1 ]
Sun, Weijie [1 ]
Sepehrvand, Nariman [2 ,4 ]
Nademi, Yousef [1 ]
Bainey, Kevin [2 ,3 ]
Ezekowitz, Justin [2 ,3 ]
Hindle, Abram [1 ]
Mcalister, Finlay [2 ,3 ]
Greiner, Russel [1 ]
Sandhu, Roopinder [2 ,5 ]
Kaul, Padma [2 ,3 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
[2] Univ Alberta, Canadian VIGOUR Ctr, Dept Med, Edmonton, AB, Canada
[3] Univ Alberta, Dept Med, Edmonton, AB, Canada
[4] Univ Calgary, Dept Med, Calgary, AB, Canada
[5] Cedars Sinai Med Ctr Hosp Syst, Smidt Heart Inst, Los Angeles, CA USA
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
基金
加拿大健康研究院;
关键词
ARTIFICIAL-INTELLIGENCE; NETWORKS; ICD-9-CM; ECG;
D O I
10.1038/s41746-024-01130-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Artificial intelligence-enabled electrocardiogram (ECG) algorithms are gaining prominence for the early detection of cardiovascular (CV) conditions, including those not traditionally associated with conventional ECG measures or expert interpretation. This study develops and validates such models for simultaneous prediction of 15 different common CV diagnoses at the population level. We conducted a retrospective study that included 1,605,268 ECGs of 244,077 adult patients presenting to 84 emergency departments or hospitals, who underwent at least one 12-lead ECG from February 2007 to April 2020 in Alberta, Canada, and considered 15 CV diagnoses, as identified by International Classification of Diseases, 10th revision (ICD-10) codes: atrial fibrillation (AF), supraventricular tachycardia (SVT), ventricular tachycardia (VT), cardiac arrest (CA), atrioventricular block (AVB), unstable angina (UA), ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), pulmonary embolism (PE), hypertrophic cardiomyopathy (HCM), aortic stenosis (AS), mitral valve prolapse (MVP), mitral valve stenosis (MS), pulmonary hypertension (PHTN), and heart failure (HF). We employed ResNet-based deep learning (DL) using ECG tracings and extreme gradient boosting (XGB) using ECG measurements. When evaluated on the first ECGs per episode of 97,631 holdout patients, the DL models had an area under the receiver operating characteristic curve (AUROC) of <80% for 3 CV conditions (PTE, SVT, UA), 80-90% for 8 CV conditions (CA, NSTEMI, VT, MVP, PHTN, AS, AF, HF) and an AUROC > 90% for 4 diagnoses (AVB, HCM, MS, STEMI). DL models outperformed XGB models with about 5% higher AUROC on average. Overall, ECG-based prediction models demonstrated good-to-excellent prediction performance in diagnosing common CV conditions.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction [J].
Al-Zaiti, Salah S. ;
Martin-Gill, Christian ;
Zegre-Hemsey, Jessica K. ;
Bouzid, Zeineb ;
Faramand, Ziad ;
Alrawashdeh, Mohammad O. ;
Gregg, Richard E. ;
Helman, Stephanie ;
Riek, Nathan T. ;
Kraevsky-Phillips, Karina ;
Clermont, Gilles ;
Akcakaya, Murat ;
Sereika, Susan M. ;
Van Dam, Peter ;
Smith, Stephen W. ;
Birnbaum, Yochai ;
Saba, Samir ;
Sejdic, Ervin ;
Callaway, Clifton W. .
NATURE MEDICINE, 2023, 29 (07) :1804-+
[2]   Electrocardiogram Detection of Pulmonary Hypertension Using Deep Learning [J].
Aras, Mandar A. ;
Abreau, Sean ;
Mills, Hunter ;
Radhakrishnan, Lakshmi ;
Klein, Liviu ;
Mantri, Neha ;
Rubin, Benjamin ;
Barrios, Joshua ;
Chehoud, Christel ;
Kogan, Emily ;
Gitton, Xavier ;
Nnewihe, Anderson ;
Quinn, Deborah ;
Bridges, Charles ;
Butte, Atul J. ;
Olgin, Jeffrey E. ;
Tison, Geoffrey H. .
JOURNAL OF CARDIAC FAILURE, 2023, 29 (07) :1017-1028
[3]   Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs [J].
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Kapa, Suraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
[4]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[5]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[6]  
Brier GW, 1950, MON WEATHER REV, V78, P1
[7]   Deep learning-derived 12-lead electrocardiogram-based genotype prediction for hypertrophic cardiomyopathy: a pilot study [J].
Chen, LaiTe ;
Fu, GuoSheng ;
Jiang, ChenYang .
ANNALS OF MEDICINE, 2023, 55 (01)
[8]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[9]  
Choi J, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-18640-8
[10]   AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017 [J].
Clifford, Gari D. ;
Liu, Chengyu ;
Moody, Benjamin ;
Lehman, Li-Wei H. ;
Silva, Ikaro ;
Li, Qiao ;
Johnson, A. E. ;
Mark, Roger G. .
2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44