Möbius manifolds, monoids, and retracts of topological groups

被引:0
作者
Karl H. Hofmann
John R. Martin
机构
[1] Technische Universität Darmstadt,Fachbereich Mathematik
[2] University of Saskatchewan,Department of Mathematics and Statistics
来源
Semigroup Forum | 2015年 / 90卷
关键词
Topological group; Compact topological semigroup; Retract; Mapping cylinder; Möbius band; Möbius strip ; Fiber bundle;
D O I
暂无
中图分类号
学科分类号
摘要
The definition for an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional Möbius manifold is given; n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} yields the classical Möbius band. For n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1, 2$$\end{document} or 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}, these manifolds are compact topological monoids, for n=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8$$\end{document}, topological Moufang monoids. All of these manifolds are homeomorphic to retracts of topological groups. If n≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le 4$$\end{document}, then any compact n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-manifold X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} with connected boundary B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} admitting the structure of a topological monoid with B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} being a topological subsemigroup of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} is a retract of a topological group. The methods proposed here use the monoid structure of mapping cylinders of compact groups and the higher dimensional analogs of the monoid embedding of the classical Möbius band into the solid torus.
引用
收藏
页码:301 / 316
页数:15
相关论文
共 16 条
  • [1] Gartside PM(1997)Mal’tsev and retral spaces Topology Appl. 80 115-129
  • [2] Reznichenko EA(2010)Benno Artmann in den Mitteilungen der DMV Mitt. DMV 18 194-194
  • [3] Sipacheva OV(2012)Topological left-loops Topol. Proc. 39 185-66
  • [4] Hofmann KH(2014)Retracts of topological groups and compact monoids Topol. Proc. 43 57-46
  • [5] Törner Günter(1963)A finite dimensional homogeneous clan is a group Ann. Math. 78 41-63
  • [6] Hofmann KH(1969)Semigroups on coset spaces Duke Math. J. 39 61-143
  • [7] Martin JR(1957)On the structure of semigroups on a compact manifold with boundary Ann. Math. 65 117-24
  • [8] Hofmann KH(1991)Compacta with a continuous Mal’tsev operation and retracts of topological groups Moscow Univ. Math. Bull. 46 22-169
  • [9] Martin JR(1982)The topological group generated by a Lindelöf Soviet Math. Dokl. 26 166-undefined
  • [10] Hudson A(undefined)-space has the Souslin property undefined undefined undefined-undefined