Sharp profiles for periodic logistic equation with nonlocal dispersal

被引:0
作者
Jian-Wen Sun
机构
[1] Lanzhou University,School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems
来源
Calculus of Variations and Partial Differential Equations | 2020年 / 59卷
关键词
Positive solution; Periodic profile; Nonlocal dispersal; 35B40; 35K57; 35P05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the nonlocal dispersal logistic equation ut=J∗u-u+λu-[b(x)q(t)+δ]upinΩ¯×(0,∞),u(x,t)=0inRN\Ω¯×(0,∞),u(x,t)=u(x,t+T)inΩ¯×[0,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_t=J*u-u+\lambda u-[b(x)q(t)+\delta ]u^p &{}\text {in}\,\bar{\Omega }\times (0,\infty ),\\ u(x,t)=0 &{}\text {in}\,{\mathbb {R}^N\setminus \bar{\Omega }}\times (0,\infty ),\\ u(x,t)=u(x,t+T) &{}\text {in}\,\bar{\Omega }\times [0,\infty ), \end{array}\right. } \end{aligned}$$\end{document}here Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document} is a bounded domain, J is a nonnegative dispersal kernel, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a fixed parameter and δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. The coefficients b, q are nonnegative and continuous functions, and q is periodic in t. We are concerned with the asymptotic profiles of positive solutions as δ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \rightarrow 0$$\end{document}. We obtain that the temporal degeneracy of q does not make a change of profiles, but the spatial degeneracy of b makes a large change. We find that the sharp profiles are different from the classical reaction–diffusion equations. The investigation in this paper shows that the periodic profile has two different blow-up speeds and the sharp profile is time periodic in domain without spatial degeneracy.
引用
收藏
相关论文
共 62 条
  • [1] Bates P(1997)Traveling waves in a convolution model for phase transitions Arch. Ration. Mech. Anal. 138 105-136
  • [2] Fife P(2007)Existence, uniqueness, and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal J. Math. Anal. Appl. 332 428-440
  • [3] Ren X(2003)Permanence under strong aggressions is possible Ann. Inst. H. Poincaré Anal. Non Linéaire 20 999-1041
  • [4] Wang X(2011)Regularity of radial extremal solutions for some non-local semilinear equations Commun. Partial Differ. Equ. 36 1353-1384
  • [5] Bates P(2010)On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators J. Differ. Equ. 249 2921-2953
  • [6] Zhao G(2008)Existence and uniqueness of solutions to nonlocal equation with monostable nonlinearity SIAM J. Math. Anal. 39 1693-1709
  • [7] Cano-Casanova S(2002)Positive solutions with prescribed patterns in some simple semilinear equations Differ. Integral Equ. 12 805-822
  • [8] López-Gómez J(2012)The periodic logistic equation with spatial and temporal degeneracies Trans. Am. Math. Soc. 364 6039-6070
  • [9] Capella A(2013)Sharp spatiotemporal patterns in the diffusive time-periodic logistic equation J. Differ. Equ. 254 3794-3816
  • [10] Dávila J(2017)A rigidity result for non-local semilinear equations Proc. R. Soc. Edinb. Sect. A 147 1009-1018