The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars

被引:0
作者
J. A. Rodriguez-Manfredi
M. de la Torre Juarez
A. Sanchez-Lavega
R. Hueso
G. Martinez
M. T. Lemmon
C. E. Newman
A. Munguira
M. Hieta
L. K. Tamppari
J. Polkko
D. Toledo
E. Sebastian
M. D. Smith
I. Jaakonaho
M. Genzer
A. De Vicente-Retortillo
D. Viudez-Moreiras
M. Ramos
A. Saiz-Lopez
A. Lepinette
M. Wolff
R. J. Sullivan
J. Gomez-Elvira
V. Apestigue
P. G. Conrad
T. Del Rio-Gaztelurrutia
N. Murdoch
I. Arruego
D. Banfield
J. Boland
A. J. Brown
J. Ceballos
M. Dominguez-Pumar
S. Espejo
A. G. Fairén
R. Ferrandiz
E. Fischer
M. Garcia-Villadangos
S. Gimenez
F. Gomez-Gomez
S. D. Guzewich
A.-M. Harri
J. J. Jimenez
V. Jimenez
T. Makinen
M. Marin
C. Martin
J. Martin-Soler
A. Molina
机构
[1] Centro de Astrobiología (INTA-CSIC),Jet Propulsion Laboratory
[2] California Institute of Technology,Dept. Fí sica Aplicada
[3] Universidad del País Vasco (UPV/EHU),Dept. Física y Matemáticas
[4] Lunar and Planetary Institute,Institut Supérieur de l’Aéronautique et de l’Espace (ISAE
[5] Space Science Institute,SUPAERO)
[6] Aeolis Corporation,Dept. de Ingeniería Electrónica
[7] Finnish Meteorological Institute,Dept. of Climate and Space Sciences and Engineering
[8] Instituto Nacional de Técnica Aeroespacial (INTA),Dept. de Mecánica de Fluidos y Propulsión Aeroespacial
[9] NASA Goddard Space Flight Center,undefined
[10] Universidad de Alcalá,undefined
[11] Institute of Physical Chemistry Rocasolano,undefined
[12] CSIC,undefined
[13] Cornell University,undefined
[14] Carnegie Institution,undefined
[15] Université de Toulouse,undefined
[16] NASA Ames Research Center,undefined
[17] Plancius Research,undefined
[18] Instituto de Microelectrónica de Sevilla (US-CSIC),undefined
[19] Universidad Politécnica de Cataluña,undefined
[20] University of Michigan,undefined
[21] Universidad Politécnica de Madrid,undefined
[22] Southwest Research Institute,undefined
来源
Nature Geoscience | 2023年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both combined and simultaneous, unveil the diversity of processes driving change on today’s Martian surface at Jezero crater.
引用
收藏
页码:19 / 28
页数:9
相关论文
共 91 条
[1]  
Farley KA(2020)Mars 2020 mission overview Space Sci. Rev. 216 142-4574
[2]  
Rodriguez-Manfredi JA(2021)The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission Space Sci. Rev. 217 48-1758
[3]  
Hess SL(1997)Meteorological results from the surface of Mars: Viking 1 and 2 J. Geophys. Res. 82 4559-1753
[4]  
Henry RM(1997)The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment Science 278 1752-640
[5]  
Leovy CB(2008)Temperature, pressure and wind instrumentation on the Phoenix meteorological package J. Geophys. Res. 113 EA0A10-198
[6]  
Ryan JA(2004)First atmospheric science results from the Mars Exploration Rovers Mini-TES Science 306 1750-14968
[7]  
Tillman JE(2012)REMS: the environmental sensor suite for the Mars Science Laboratory rover Space Sci. Rev. 170 583-1727
[8]  
Schofield JT(2019)InSight Auxiliary Payload Sensor Suite (APSS) Space Sci. Rev. 215 4-470
[9]  
Taylor PA(2011)The Martian atmospheric boundary layer Rev. Geophys. 49 2010RG000351-189
[10]  
Smith MD(2015)The physics of Martian weather and climate: a review Rep. Prog. Phys. 78 125901-2509