On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms

被引:0
|
作者
Fedor V. Fomin
Serge Gaspers
Artem V. Pyatkin
Igor Razgon
机构
[1] University of Bergen,Department of Informatics
[2] SB RAS,Sobolev Institute of Mathematics
[3] University College Cork,Computer Science Department
来源
Algorithmica | 2008年 / 52卷
关键词
Minimum feedback vertex set; Maximum induced forest; Exact exponential algorithm; Number of minimal feedback vertex sets;
D O I
暂无
中图分类号
学科分类号
摘要
We present a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(1.7548^{n})$\end{document} algorithm finding a minimum feedback vertex set in an undirected graph on n vertices. We also prove that a graph on n vertices can contain at most 1.8638n minimal feedback vertex sets and that there exist graphs having 105n/10≈1.5926n minimal feedback vertex sets.
引用
收藏
页码:293 / 307
页数:14
相关论文
共 10 条
  • [1] On the minimum feedback vertex set problem: Exact and enumeration algorithms
    Fomin, Fedor V.
    Gaspers, Serge
    Pyatkin, Artem V.
    Razgon, Igor
    ALGORITHMICA, 2008, 52 (02) : 293 - 307
  • [2] An Exact Method for the Minimum Feedback Arc Set Problem
    Baharev A.
    Schichl H.
    Neumaier A.
    Achterberg T.
    ACM Journal of Experimental Algorithmics, 2021, 26
  • [3] Finding a minimum feedback vertex set in time O(1.7548n)
    Fomin, Fedor V.
    Gaspers, Serge
    Pyatkin, Artem V.
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2006, 4169 : 184 - 191
  • [4] Minimum feedback vertex set and acyclic coloring
    Fertin, G
    Godard, E
    Raspaud, A
    INFORMATION PROCESSING LETTERS, 2002, 84 (03) : 131 - 139
  • [5] A minimum feedback vertex set in the trivalent Cayley graph
    Tanaka, Yuuki
    Shibata, Yukio
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (05) : 1269 - 1274
  • [6] On computing the minimum feedback vertex set of a directed graph by contraction operations
    Lin, HM
    Jou, JY
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2000, 19 (03) : 295 - 307
  • [7] Minimum weight feedback vertex sets in circle graphs
    Gavril, Fanica
    INFORMATION PROCESSING LETTERS, 2008, 107 (01) : 1 - 6
  • [8] Exact algorithms for treewidth and minimum fill-in
    Fomin, Fedor V.
    Kratsch, Dieter
    Todinca, Ioan
    Villanger, Yngve
    SIAM JOURNAL ON COMPUTING, 2008, 38 (03) : 1058 - 1079
  • [9] MINIMUM WEIGHT FEEDBACK VERTEX SETS IN CIRCLE n-GON GRAPHS AND CIRCLE TRAPEZOID GRAPHS
    Gavril, Fanica
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (03) : 323 - 336
  • [10] Exact Exponential Algorithm for Distance-3 Independent Set Problem
    Yamanaka, Katsuhisa
    Kawaragi, Shogo
    Hirayama, Takashi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (03) : 499 - 501