General Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-dual Blaschke bodies and the applications

被引:0
作者
Jianye Wang
Weidong Wang
机构
[1] China Three Gorges University,Department of Mathematics
关键词
general ; -dual Blaschke body; extremal value; -Busemann-Petty problem; 52A20; 52A40;
D O I
10.1186/s13660-015-0756-7
中图分类号
学科分类号
摘要
Lutwak defined the dual Blaschke combination of star bodies. In this paper, based on the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-dual Blaschke combination of star bodies, we define the general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-dual Blaschke bodies and obtain the extremal values of their volume and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-dual affine surface area. Further, as the applications, we study two negative forms of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-Busemann-Petty problems.
引用
收藏
相关论文
共 49 条
[1]  
Lutwak E(1988)Intersection bodies and dual mixed volumes Adv. Math. 71 232-261
[2]  
Haberl C(2008)-Intersection bodies Adv. Math. 4 2599-2624
[3]  
Haberl C(2006)A characterization of Int. Math. Res. Not. 2006 1-26
[4]  
Ludwig M(2009) intersection bodies J. Differ. Geom. 83 641-658
[5]  
Haberl C(2009)General J. Funct. Anal. 257 4191-4213
[6]  
Schuster FE(2005) affine isoperimetric inequalities Trans. Am. Math. Soc. 357 1409-1428
[7]  
Haberl C(2006)Asymmetric affine Am. J. Math. 128 109-119
[8]  
Schuster FE(2014) Sobolev inequalities Proc. Indian Acad. Sci. Math. Sci. 124 39-49
[9]  
Ludwig M(2015)Minkowski valuations Math. Inequal. Appl. 18 517-542
[10]  
Ludwig M(2012)Intersection bodies and valuations Math. Ann. 352 397-414