On generalizations of some inequalities for convex functions via quantum integrals

被引:0
作者
Samet Erden
Sabah Iftikhar
Mohsen Rostamian Delavar
Poom Kumam
Phatiphat Thounthong
Wiyada Kumam
机构
[1] Bartın University,Department of Mathematics, Faculty of Science
[2] King Mongkut’s University of Technology Thonburi (KMUTT),KMUTT Fixed Point Research Laboratory, KMUTT
[3] University of Bojnord,Fixed Point Theory and Applications Research Group, SCL 802 Fixed Point Laboratory, Department of Mathematics, Faculty of Science
[4] King Mongkut’s University of Technology North Bangkok,Department of Mathematics, Faculty of Basic Sciences
[5] Rajamangala University of Technology Thanyaburi (RMUTT),Renewable Energy Research Centre (RERC)
[6] China Medical University Hospital,Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and Technology
[7] China Medical University,Department of Medical Research
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Convex functions; Quantum calculus; Simpson’s second type integral inequalities; 26D15; 26D10; 90C23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some new Simpson’s second type quantum integral inequalities are established for convex functions. Some special cases are discussed for the case q→1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\rightarrow 1^-$$\end{document}. Moreover, some inequalities related to Simpson’s 38\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{3}{8}$$\end{document} formula are obtained.
引用
收藏
相关论文
共 46 条
[1]  
Alp N(2018)-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions J. King Saud Univ. Sci. 30 193-203
[2]  
Sarikaya MZ(2000)On Simpson’s inequality and applications J. Inequal. Appl. 5 533-579
[3]  
Kunt M(2003)A method for J. Nonlinear Math. Phys. 10 487-525
[4]  
Iscan I(2004)-calculus Comput. Math. Appl. 47 281-300
[5]  
Dragomir SS(1910)Integral inequalities in Q. J. Pure Appl. Math. 41 193-203
[6]  
Agarwal RP(1910)-calculus Am. J. Math. 32 305-314
[7]  
Cerone P(2017)On a J. Appl. Anal. Comput. 7 501-522
[8]  
Ernst T(2020)-definite integrals AIMS Math. 5 568-586
[9]  
Gauchman H(2016)-Difference equations J. Adv. Math. Stud. 9 07-16
[10]  
Jackson FH(2018)Some quantum estimates of Hermite–Hadamard inequalities for convex functions Honam Math. J. 40 239-250