The Almost Sure Invariance Principle for Beta-Mixing Measures

被引:0
作者
Nicolai Haydn
机构
[1] USC,Mathematics Department
来源
Journal of Statistical Physics | 2015年 / 159卷
关键词
Shannon–McMillan–Breiman; Beta-mixing measures; Almost sure invariance principle; Central limit theorem; Recurrence time;
D O I
暂无
中图分类号
学科分类号
摘要
The theorem of Shannon–McMillan–Breiman states that for every generating partition on an ergodic system of finite entropy the exponential decay rate of the measure of cylinder sets equals the metric entropy almost everywhere. In addition the measure of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-cylinders is in various settings known to be lognormally distributed in the limit. In this paper the logarithm of the measure of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-cylinder, the information function, satisfies the almost sure invariance principle in the case in which the measure is β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-mixing. We get a similar result for the recurrence time. Previous results are due to Philipp and Stout who deduced the ASIP when the measure is strong mixing and satisfies an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{L}^1$$\end{document}-type Gibbs condition. We also prove the ASIP for the recurrence time.
引用
收藏
页码:231 / 254
页数:23
相关论文
共 22 条
[1]  
Chernov N(1995)Limit theorems and Markov approximations for chaotic dynamical systems Prob. Th. Rel. Fields 101 321-362
[2]  
Collet P(1999)Fluctuations of repetition times for Gibbsian sources Nonlinearity 12 1225-1237
[3]  
Galves A(2003)Entropy fluctuations for parabolic maps Nonlinearity 16 1203-1218
[4]  
Schmitt B(1997)Inequalities for hitting times in mixing dynamical systems Random Comput. Dyn. 5 337-348
[5]  
Ferrero P(1969)The central limit theorem for stationary processes Soviet Math. Doklady 10 1174-1176
[6]  
Haydn N(2013)Limit theorems in hidden Markov models IEEE Trans. Inf. Theory 59 1311-1328
[7]  
Vaienti S(2004)Fluctuations of the metric entropy for mixing measures Stoch. Dyn. 4 595-627
[8]  
Galves A(1962)Some limit theorems for stationary processes Theory Prob. Appl. 7 349-382
[9]  
Schmitt B(1998)Asymptotic recurrence and waiting times for stationary processes J. Theor. Prob. 11 795-811
[10]  
Gordin M(1992)A recurrence theorem for dependent processes with applications to data compression IEEE 38 1561-1564