Bosonization and Vertex Algebras with Defects

被引:0
|
作者
M. Mintchev
P. Sorba
机构
[1] Universitá di Pisa,INFN and Dipartimento di Fisica
[2] LAPTH,undefined
来源
Annales Henri Poincaré | 2006年 / 7卷
关键词
Vertex Operator; Massless Scalar; Vertex Algebra; Thirring Model; Chiral Component;
D O I
暂无
中图分类号
学科分类号
摘要
The method of bosonization is extended to the case when a dissipationless point-like defect is present in space-time. Introducing the chiral components of a scalar field interacting with the defect in two dimensions, we construct the associated vertex operators. The main features of the corresponding vertex algebra are established. As an application of this framework we solve the massless Thirring model with defect. We also construct the vertex representation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{sl}(2)$$\end{document} affine Lie algebra, describing the complex interplay between the left and right sectors, which is a direct consequence of the interaction with the defect. The Sugawara form of the energy-momentum tensor is also explored.
引用
收藏
页码:1375 / 1393
页数:18
相关论文
共 50 条
  • [41] GROUPS OF LIE TYPE, VERTEX ALGEBRAS, AND MODULAR MOONSHINE
    Griess, Robert L., Jr.
    Lam, Ching Hung
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2014, 21 : 167 - 176
  • [42] On the cohomology of meromorphic open-string vertex algebras
    Qi, Fei
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 467 - 517
  • [43] VERTEX REPRESENTATIONS FOR YANGIANS OF KAC-MOODY ALGEBRAS
    Guay, Nicolas
    Regelskis, Vidas
    Wendlandt, Curtis
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2019, 6 : 665 - 706
  • [44] Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    Perse, Ozren
    JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02): : 261 - 315
  • [45] Braided Tensor Categories and Extensions of Vertex Operator Algebras
    Yi-Zhi Huang
    Alexander Kirillov
    James Lepowsky
    Communications in Mathematical Physics, 2015, 337 : 1143 - 1159
  • [46] Sugawara and Vertex Operator Constructions for Deformed Virasoro Algebras
    Daniel Arnaudon
    Jean Avan
    Luc Frappat
    Eric Ragoucy
    Junichi Shiraishi
    Annales Henri Poincaré, 2006, 7 : 1327 - 1349
  • [47] Framed Vertex Operator Algebras, Codes and the Moonshine Module
    Chongying Dong
    Robert L. Griess Jr.
    Gerald Höhn
    Communications in Mathematical Physics, 1998, 193 : 407 - 448
  • [48] TREE ALGEBRAS: AN ALGEBRAIC AXIOMATIZATION OF INTERTWINING VERTEX OPERATORS
    Kriz, Igor
    Xiu, Yang
    ARCHIVUM MATHEMATICUM, 2012, 48 (05): : 353 - 370
  • [49] Vertex Operators – From a Toy Model to Lattice Algebras
    Andrei G. Bytsko
    Volker Schomerus
    Communications in Mathematical Physics, 1998, 191 : 87 - 136
  • [50] Vertex operator algebras, generalized doubles and dual pairs
    Chongying Dong
    Gaywalee Yamskulna
    Mathematische Zeitschrift, 2002, 241 : 397 - 423