Bosonization and Vertex Algebras with Defects

被引:0
|
作者
M. Mintchev
P. Sorba
机构
[1] Universitá di Pisa,INFN and Dipartimento di Fisica
[2] LAPTH,undefined
来源
Annales Henri Poincaré | 2006年 / 7卷
关键词
Vertex Operator; Massless Scalar; Vertex Algebra; Thirring Model; Chiral Component;
D O I
暂无
中图分类号
学科分类号
摘要
The method of bosonization is extended to the case when a dissipationless point-like defect is present in space-time. Introducing the chiral components of a scalar field interacting with the defect in two dimensions, we construct the associated vertex operators. The main features of the corresponding vertex algebra are established. As an application of this framework we solve the massless Thirring model with defect. We also construct the vertex representation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{sl}(2)$$\end{document} affine Lie algebra, describing the complex interplay between the left and right sectors, which is a direct consequence of the interaction with the defect. The Sugawara form of the energy-momentum tensor is also explored.
引用
收藏
页码:1375 / 1393
页数:18
相关论文
共 50 条
  • [1] Vertex algebras and vertex poisson algebras
    Li, HS
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (01) : 61 - 110
  • [2] Vertex algebras and TKK algebras
    Chen, Fulin
    Ding, Lingen
    Wang, Qing
    JOURNAL OF ALGEBRA, 2024, 640 : 147 - 173
  • [3] Deforming vertex algebras by vertex bialgebras
    Jing, Naihuan
    Kong, Fei
    Li, Haisheng
    Tan, Shaobin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (01)
  • [4] Twisted Logarithmic Modules of Vertex Algebras
    Bojko Bakalov
    Communications in Mathematical Physics, 2016, 345 : 355 - 383
  • [5] Cohomology of vertex algebras
    Liberati, Jose I.
    JOURNAL OF ALGEBRA, 2017, 472 : 259 - 272
  • [6] Logarithmic Vertex Algebras
    Bakalov, Bojko N.
    Villarreal, Juan J.
    TRANSFORMATION GROUPS, 2022, 29 (4) : 1295 - 1357
  • [7] Modules-at-Infinity for Quantum Vertex Algebras
    Haisheng Li
    Communications in Mathematical Physics, 2008, 282 : 819 - 864
  • [8] CONFORMAL ALGEBRAS, VERTEX ALGEBRAS, AND THE LOGIC OF LOCALITY
    Smith, Jonathan D. H.
    MATHEMATICA SLOVACA, 2016, 66 (02) : 407 - 420
  • [9] Twisted modules for vertex algebras associated with vertex algebroids
    Li, Haisheng
    Yamskulna, Gaywalee
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) : 199 - 222
  • [10] Toroidal vertex algebras and their modules
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF ALGEBRA, 2012, 365 : 50 - 82