Computing models for quotients of modular curves

被引:0
作者
Josha Box
机构
[1] University of Warwick Coventry,
来源
Research in Number Theory | 2021年 / 7卷
关键词
Modular curves; Modular forms; Algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an algorithm for computing a Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document}-rational model for the quotient of a modular curve by an automorphism group, under mild assumptions on the curve and the automorphisms, by determining q-expansions for a basis of the corresponding space of cusp forms. We also give a moduli interpretation for general morphisms between modular curves.
引用
收藏
相关论文
共 27 条
  • [11] Conrad B(2015)Les schémas de modules de courbes elliptiques Invent. Math. 201 159-206
  • [12] Diamond F(1972)Elliptic curves over totally real cubic fields are modular Invent. Math. 15 259-331
  • [13] Taylor R(2002)Elliptic curves over real quadratic fields are modular J. Théor. Nombres Bordeaux 14 205-219
  • [14] Conway JH(1988)Propriétés galoisiennes des points d’ordre fini des courbes elliptiques Manuscripta Math. 61 223-248
  • [15] Norton SP(undefined)Rational points on undefined undefined undefined-undefined
  • [16] Deligne P(undefined) and quadratic undefined undefined undefined-undefined
  • [17] Rapoport M(undefined)-curves undefined undefined undefined-undefined
  • [18] Derickx M(undefined)A variant of Petri’s analysis of the canonical ideal of an algebraic curve undefined undefined undefined-undefined
  • [19] Najman F(undefined)undefined undefined undefined undefined-undefined
  • [20] Siksek S(undefined)undefined undefined undefined undefined-undefined