Computing models for quotients of modular curves

被引:0
作者
Josha Box
机构
[1] University of Warwick Coventry,
来源
Research in Number Theory | 2021年 / 7卷
关键词
Modular curves; Modular forms; Algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an algorithm for computing a Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document}-rational model for the quotient of a modular curve by an automorphism group, under mild assumptions on the curve and the automorphisms, by determining q-expansions for a basis of the corresponding space of cusp forms. We also give a moduli interpretation for general morphisms between modular curves.
引用
收藏
相关论文
共 27 条
  • [1] Atkin AOL(1978)Twists of newforms and pseudo-eigenvalues of Invent. Math. 48 221-243
  • [2] Ching Winnie Li W(1970)-operators Math. Ann. 185 134-160
  • [3] Atkin AOL(2010)Hecke operators on J. Number Theory 130 2753-2772
  • [4] Lehner J(2014)Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem J. Number Theory 145 273-300
  • [5] Baran B(2014)An exceptional isomorphism between modular curves of level 13 Algeb. Number Theory 8 1201-1229
  • [6] Baran B(2015)Tetrahedral elliptic curves and the local-global principle for isogenies LMS J. Comput. Math. 18 578-602
  • [7] Barinder S(1999)Hyperelliptic modular curves J. Am. Math. Soc. 12 521-567
  • [8] Banwait John E(1979) and isogenies of elliptic curves over quadratic fields Bull. Lond. Math. Soc. 11 308-339
  • [9] Bruin P(1973)Modularity of certain potentially Barsotti-Tate Galois representations Lecture Notes Math. 349 143-316
  • [10] Najman F(2020)Monstrous moonshine Algeb. Number Theory 14 1791-1800