Generating series of classes of Hilbert schemes of points on orbifolds

被引:0
作者
S. M. Gusein-Zade
I. Luengo
A. Melle-Hernández
机构
[1] Moscow State University,Faculty of Mechanics and Mathematics
[2] Universidad Complutense de Madrid,Departamento de Álgebra
来源
Proceedings of the Steklov Institute of Mathematics | 2009年 / 267卷
关键词
STEKLOV Institute; Projective Variety; Power Structure; Hilbert Scheme; Regular System;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of power structure over the Grothendieck ring of complex quasi-projective varieties is used for describing generating series of classes of Hilbert schemes of zero-dimensional subschemes (“fat points”) on complex orbifolds.
引用
收藏
页码:125 / 130
页数:5
相关论文
共 14 条
  • [1] Cheah J.(1996)On the Cohomology of Hilbert Schemes of Points J. Algebr. Geom. 5 479-511
  • [2] Cheah J.(1998)The Virtual Hodge Polynomials of Nested Hilbert Schemes and Related Varieties Math. Z. 227 479-504
  • [3] Göttsche L.(2001)On the Motive of the Hilbert Scheme of Points on a Surface Math. Res. Lett. 8 613-627
  • [4] Gusein-Zade S. M.(2004)A Power Structure over the Grothendieck Ring of Varieties Math. Res. Lett. 11 49-57
  • [5] Luengo I.(2006)Power Structure over the Grothendieck Ring of Varieties and Generating Series of Hilbert Schemes of Points Mich. Math. J. 54 353-359
  • [6] Melle-Hernández A.(2007)On the Power Structure over the Grothendieck Ring of Varieties and Its Applications Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 258 58-69
  • [7] Gusein-Zade S. M.(1997)Orbifolds, Sheaves and Groupoids K-Theory 12 3-21
  • [8] Luengo I.(undefined)undefined undefined undefined undefined-undefined
  • [9] Melle-Hernández A.(undefined)undefined undefined undefined undefined-undefined
  • [10] Gusein-Zade S. M.(undefined)undefined undefined undefined undefined-undefined