Hardy–Littlewood–Sobolev-Type Inequality for the Fractional Littlewood–Paley g-Function in Jacobi Analysis

被引:0
作者
Néjib Ben Salem
机构
[1] Université de Tunis El Manar,Laboratoire d’Analyse Mathématique et Applications, LR11ES11, Faculté des Sciences de Tunis
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Jacobi function; Jacobi transform; Heat semigroup; Poisson semigroup; Littlewood–Paley function; Hardy–Littlewood–Sobolev inequality; 42B10; 42B25; 44A15; 43A32;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the fractional Littlewood–Paley g-function of order s,s>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s, ~~s>0$$\end{document}, noted gsα,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{s}^{\alpha ,\beta }$$\end{document}, associated with the Jacobi operator Δα,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\alpha ,\beta }$$\end{document} on (0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0, \infty $$\end{document}) as the operator gsα,β(f)(x)=∫0∞t2s+1|∂uα,β(f)∂t(x,t)|2dt12,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}g_{s}^{\alpha , \beta }(f)(x)=\left( \int _{0}^{\infty }t^{2s+1}|\frac{\partial u_{\alpha , \beta }(f)}{\partial t}(x,t)|^{2}dt\right) ^{\frac{1}{2}}, \end{aligned}$$\end{document}where uα,β(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u_{\alpha , \beta }(f)$$\end{document} is the Poisson integral defined by uα,β(f)=Ptα,β∗α,βf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\alpha , \beta }(f)= P_{t}^{\alpha , \beta }*_{\alpha , \beta }f$$\end{document} (∗α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ *_{\alpha , \beta }$$\end{document} being the convolution in the Jacobi setting). We establish the following Hardy–Littlewood–Sobolev-type inequality: For 0<s<2(α+1),1<p<2(α+1)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<2(\alpha +1),~~1<p<\frac{2(\alpha +1)}{s}$$\end{document} and 1q=1p-s2(α+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{q}=\frac{1}{p}-\frac{s}{2(\alpha +1)}$$\end{document}, there exists a constant Cα,s,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\alpha , s, p}$$\end{document} such that for all f∈Lp([0,+∞[,dμα,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^{p}([0,+\infty [,d\mu _{\alpha ,\beta })$$\end{document}, ‖gsα,βf‖q,μ≤Cα,s,p‖f‖p,μ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert g_{s}^{\alpha ,\beta }f\Vert _{q,\mu }\le C_{\alpha , s, p} \Vert f\Vert _{p,\mu }. \end{aligned}$$\end{document}Next, if p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1$$\end{document}, 0<s<2(α+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<2(\alpha +1)$$\end{document} and q=α+12(α+1)-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=\frac{\alpha +1}{2(\alpha +1)-s}$$\end{document}, we prove that the operator gsα,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{s}^{\alpha ,\beta }$$\end{document} is of weak type (1, q).
引用
收藏
页码:4439 / 4452
页数:13
相关论文
共 13 条
  • [1] Astengo F(2012)Dynamics of the heat semigroup in Jacobi analysis J. Math. Anal. Appl. 391 48-56
  • [2] Di Blasio B(1998)Pseudo-differential operators associated with the Jacobi differential operator J. Math. Anal. Appl. 220 365-381
  • [3] Ben Salem N(2000)Sobolev type spaces associated with Jacobi differential operators Integral Transforms Spec. Funct. 9 163-184
  • [4] Dachraoui A(2011)Hilbert transform and related topics associated with the differential Jacobi operator on (0,+8) Positivity 15 221-240
  • [5] Ben Salem N(2000)Fourier multipliers for Lp on Chébli-Trimèche hypergroups Proc. Lond. Math. Soc. 80 643-664
  • [6] Dachraoui A(2003)Heat kernel and Hardy’s theorem for Jacobi transform Chin. Ann. Math. Ser. B 24 359-366
  • [7] Ben Salem N(2009)H1-estimates of Littlewood-Paley and Lusin functions for Jacobi analysis Anal. Theory Appl. 25 201-229
  • [8] Samaali T(undefined)undefined undefined undefined undefined-undefined
  • [9] Bloom WR(undefined)undefined undefined undefined undefined-undefined
  • [10] Xu Z(undefined)undefined undefined undefined undefined-undefined