Regularity of variational solutions to linear boundary value problems in Lipschitz domains

被引:0
作者
M. S. Agranovich
机构
[1] Moscow Institute of Electronics and Mathematics,
来源
Functional Analysis and Its Applications | 2006年 / 40卷
关键词
second-order strongly elliptic system; Dirichlet, Neumann, xxx Poincaré-Steklov boundary value problems; variational solution; interpolation; regularity of solutions; Lebesgue xxx Besov spaces; regularity of eigenfunctions;
D O I
暂无
中图分类号
学科分类号
摘要
In a bounded Lipschitz domain in ℝn, we consider a second-order strongly elliptic system with symmetric principal part written in divergent form. We study the Neumann boundary value problem in a generalized variational (or weak) setting using the Lebesgue spaces Hpσ(Ω) for solutions, where p can differ from 2 and σ can differ from 1. Using the tools of interpolation theory, we generalize the known theorem on the regularity of solutions, in which p = 2 and {σ − 1} < 1/2, and the corresponding theorem on the unique solvability of the problem (Savaré, 1998) to p close to 2. We compare this approach with the nonvariational approach accepted in numerous papers of the modern theory of boundary value problems in Lipschitz domains. We discuss the regularity of eigenfunctions of the Dirichlet, Neumann, and Poincaré-Steklov spectral problems.
引用
收藏
页码:313 / 329
页数:16
相关论文
共 47 条
  • [1] Agranovich M. S.(2001)Spectral properties of potential type operators for a class of strongly elliptic systems on smooth and Lipschitz surfaces Trudy Moskov. Mat. Obshch. 62 3-53
  • [2] Agranovich M. S.(2002)Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains Uspekhi Mat. Nauk 57 3-79
  • [3] Brown R.(1994)The mixed problem for Laplace’s equation in a class of Lipschitz domains Comm. Partial Differential Equations 19 1217-1233
  • [4] Calderón A. P.(1964)Intermediate spaces and interpolation, the complex method Studia Math. 24 113-190
  • [5] Coifman R. R.(1982)L’intégrale de Cauchy définit un opérateur borné sur Ann. of Math. (2) 116 361-387
  • [6] McIntosh A.(1988) pour les courbes lipschitziennes SIAM J. Math. Anal. 19 613-626
  • [7] Meyer Y.(1988)Boundary integral operators on Lipschitz domains: elementary results Duke Math. J. 57 795-818
  • [8] Costabel M.(1993)Boundary value problems for the system of elastostatics on Lipschitz domains Math. Nachr. 160 149-191
  • [9] Dahlberg B. E. J.(1995)Pseudodifferential operators on compact manifolds with Lipschitz boundary Integral Equations Operator Theory 23 294-335
  • [10] Kenig C. E.(1998)The Wiener-Hopf method for systems of pseudodifferential equations with an application to crack problems J. Funct. Anal. 159 323-368