Index theory and supersymmetry of 5D horizons

被引:0
作者
J. Grover
J. Gutowski
G. Papadopoulos
W. A. Sabra
机构
[1] University of Aveiro and I3N,Physics Department
[2] University of Surrey,Department of Mathematics
[3] King’s College London,Department of Mathematics
[4] American University of Beirut,Centre for Advanced Mathematical Sciences and Physics Department
来源
Journal of High Energy Physics | / 2014卷
关键词
Black Holes in String Theory; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the near-horizon geometries of minimal gauged five-dimensional supergravity preserve at least half of the supersymmetry. If the near-horizon geometries preserve a larger fraction, then they are locally isometric to AdS5. Our proof is based on Lichnerowicz type theorems for two horizon Dirac operators constructed from the supercovariant connection restricted to the horizon sections, and on an application of the index theorem. An application is that all half-supersymmetric five-dimensional horizons admit an sl(2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R} $\end{document}) symmetry subalgebra.
引用
收藏
相关论文
共 58 条
  • [1] Gibbons GW(1993)Vacuum interpolation in supergravity via super p-branes Phys. Rev. Lett. 71 3754-undefined
  • [2] Townsend PK(1967)Event horizons in static vacuum space-times Phys. Rev. 164 1776-undefined
  • [3] Israel W(1971)Axisymmetric Black Hole Has Only Two Degrees of Freedom Phys. Rev. Lett. 26 331-undefined
  • [4] Carter B(1972)Black holes in general relativity Commun. Math. Phys. 25 152-undefined
  • [5] Hawking SW(1975)Uniqueness of the Kerr black hole Phys. Rev. Lett. 34 905-undefined
  • [6] Robinson DC(1968)Event horizons in static electrovac space-times Commun. Math. Phys. 8 245-undefined
  • [7] Israel W(1982)Proof of uniqueness of the Kerr-Newman black hole solution J. Phys. A 15 3173-undefined
  • [8] Mazur PO(2002)Uniqueness and nonuniqueness of static black holes in higher dimensions Phys. Rev. Lett. 89 041101-undefined
  • [9] Gibbons GW(2003)Uniqueness theorem of static degenerate and nondegenerate charged black holes in higher dimensions Phys. Rev. D 67 084025-undefined
  • [10] Ida D(2006)Classification of Static Charged Black Holes in Higher Dimensions Phys. Rev. D 73 124027-undefined