\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} =1 dynamics with TN theory

被引:0
作者
Kazunobu Maruyoshi
Yuji Tachikawa
Wenbin Yan
Kazuya Yonekura
机构
[1] California Institute of Technology,Department of Physics, Faculty of Science
[2] University of Tokyo,Institute for the Physics and Mathematics of the Universe (WPI)
[3] University of Tokyo,School of Natural Sciences
[4] Institute for Advanced Study,undefined
关键词
Supersymmetric gauge theory; Duality in Gauge Field Theories;
D O I
10.1007/JHEP10(2013)010
中图分类号
学科分类号
摘要
We study the dynamics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 supersymmetric systems consisting of the strongly-coupled superconformal theory TN , SU(N ) gauge groups, and fundamental chiral multiplets. We demonstrate that such systems exhibit familiar phenomena such as deformation of the vacuum moduli space, appearance of the dynamical superpotential, and Coulomb branches with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 Seiberg-Witten curves. The analysis requires a rather detailed knowledge of the chiral ring of the TN theory, which will also be discussed at length.
引用
收藏
相关论文
共 78 条
  • [1] Seiberg N(1994)Exact results on the space of vacua of four-dimensional SUSY gauge theories Phys. Rev. D 49 6857-undefined
  • [2] Seiberg N(1995)Electric-magnetic duality in supersymmetric nonAbelian gauge theories Nucl. Phys. B 435 129-undefined
  • [3] Argyres PC(2007)S-duality in N = 2 supersymmetric gauge theories JHEP 12 088-undefined
  • [4] Seiberg N(2012)N=2 dualities JHEP 08 034-undefined
  • [5] Gaiotto D(2013)New N = 1 Dualities JHEP 06 056-undefined
  • [6] Gadde A(2012)The Gravity duals of N = 2 superconformal field theories JHEP 10 189-undefined
  • [7] Maruyoshi K(2011)N=1 curves for trifundamentals JHEP 07 025-undefined
  • [8] Tachikawa Y(2013)Gauge Theories and Macdonald Polynomials Commun. Math. Phys. 319 147-undefined
  • [9] Yan W(2010)Argyres-Seiberg duality and the Higgs branch Commun. Math. Phys. 294 389-undefined
  • [10] Gaiotto D(2010)Sicilian gauge theories and N = 1 dualities JHEP 01 088-undefined