New estimations for the Berezin number inequality

被引:0
作者
Mojtaba Bakherad
Ulas Yamancı
机构
[1] University of Sistan and Baluchestan,Department of Mathematics, Faculty of Mathematics
[2] Suleyman Demirel University,Department of Statistics
来源
Journal of Inequalities and Applications | / 2020卷
关键词
Inequalities; Berezin number; Berezin symbol; Geometric mean; 47A63; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by the definition of Berezin number, we present some inequalities involving the operator geometric mean. For instance, it is shown that if X,Y,Z∈L(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X, Y, Z\in {\mathcal{L}}(\mathcal{H})$\end{document} such that X and Y are positive operators, then berr((X♯Y)Z)≤ber((Z⋆YZ)rq2q+Xrp2p)−1pinfλ∈Ω([X˜(λ)]rp4−[(Z⋆YZ)˜(λ)]rq4)2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \operatorname{ber}^{r} \bigl( ( X\mathbin{\sharp} Y ) Z \bigr) &\leq \operatorname{ber} \biggl(\frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q}+ \frac{X^{ \frac{rp}{2}}}{p} \biggr) -\frac{1}{p}\inf_{\lambda \in \varOmega } \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{\frac{rp}{4}}- \bigl[ \widetilde{ \bigl( Z^{\star }YZ \bigr) } ( \lambda ) \bigr] ^{ \frac{rq}{4}} \bigr) ^{2}, \end{aligned}$$ \end{document} in which X♯Y=X12(X−12YX−12)12X12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\mathbin{\sharp} Y=X^{\frac{1}{2}} ( X^{-\frac{1}{2}}YX^{- \frac{1}{2}} ) ^{\frac{1}{2}}X^{\frac{1}{2}}$\end{document}, p≥q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq q>1$\end{document} such that r≥2q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\geq \frac{2}{q}$\end{document} and 1p+1q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{p}+\frac{1}{q}=1$\end{document}.
引用
收藏
相关论文
共 38 条
[1]  
Ando T.(1995)Matrix Young inequality Oper. Theory, Adv. Appl. 75 33-38
[2]  
Aronzajn N.(1950)Theory of reproducing kernels Trans. Am. Math. Soc. 68 337-404
[3]  
Bakherad M.(2018)Some Berezin number inequalities for operator matrices Czechoslov. Math. J. 68(143) 997-1009
[4]  
Bakherad M.(2019)Berezin number inequalities for operators Concr. Oper. 6 33-43
[5]  
Garayev M.T.(2019)Complete refinements of the Berezin number inequalities J. Math. Inequal. 13 1117-1128
[6]  
Bakherad M.(2019)Some operator inequalities associated with Kantorovich and Holder–McCarthy inequalities and their applications Turk. J. Math. 43 523-532
[7]  
Lashkaripour R.(1972)Covariant and contravariant symbols for operators Math. USSR, Izv. 6 1117-1151
[8]  
Hajmohamadi M.(1990)On the singular values of a product of operators SIAM J. Matrix Anal. Appl. 11 272-277
[9]  
Yamanci U.(2016)Hardy–Hilbert’s inequality and a power inequality for Berezin numbers for operators Math. Inequal. Appl. 19 883-891
[10]  
Basaran H.(2017)Hardy type inequality for reproducing kernel Hilbert space operators and related problems Positivity 21 1615-1623