Positive Solutions for Semipositone m-point Boundary-value Problems

被引:0
作者
Ru Yun Ma*
Qiao Zhen Ma
机构
[1] Northwest Normal University,Department of Mathematics
来源
Acta Mathematica Sinica | 2004年 / 20卷
关键词
Ordinary differential equation; Existence of solutions; Multi-point boundary value problems; Fixed point theorem in cones; 34B10;
D O I
暂无
中图分类号
学科分类号
摘要
Let ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < ··· < ξm−2 < 1, ai, bi ∈ [0,∞) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0 < {\sum\nolimits_{i = 1}^{m - 2} {a_{i} < 1} } $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\sum\nolimits_{i = 1}^{m - 2} {b_{i} < 1} } $$\end{document}. We consider the m-point boundary-value problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {u}\ifmmode{''}\else$''$\fi + \lambda f{\left( {t,u} \right)} = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} t \in {\left( {0,1} \right)}, $$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {x}\ifmmode{'}\else$'$\fi{\left( 0 \right)} = {\sum\limits_{i = 1}^{m - 2} {b_{i} {x}\ifmmode{'}\else$'$\fi{\left( {\xi _{i} } \right)},{\kern 1pt} {\kern 1pt} {\kern 1pt} x{\left( 1 \right)} = {\sum\limits_{i = 1}^{m - 2} {a_{i} x{\left( {\xi _{i} } \right)},} }} } $$\end{document} where f(x, y) ≥ −M, and M is a positive constant. We show the existence and multiplicity of positive solutions by applying the fixed point theorem in cones.
引用
收藏
页码:273 / 282
页数:9
相关论文
共 8 条
[1]  
Moshinsky undefined(1950)undefined Bol. Soc. Mat. Mexicana 7 1-undefined
[2]  
Il'in undefined(1987)undefined Differential Equations 23 979-undefined
[3]  
Ma undefined(1999)undefined Electronic Journal of Differential Equations 34 1-undefined
[4]  
Feng undefined(1997)undefined J. Math. Anal. Appl. 212 467-undefined
[5]  
Feng undefined(1997)undefined Nonlinear Analysis TMA 30 5369-undefined
[6]  
Ma undefined(1997)undefined J. Math. Anal. Appl. 211 545-undefined
[7]  
Staněk undefined(1997)undefined Nonlinear Analysis TMA 28 539-undefined
[8]  
Anuradha undefined(1996)undefined Proc. Amer. Math. Soc. 124 757-undefined