Uniform Approximation of the Integrated Density of States for Long-Range Percolation Hamiltonians

被引:0
作者
Fabian Schwarzenberger
机构
[1] TU Chemnitz,Fakultät für Mathematik
来源
Journal of Statistical Physics | 2012年 / 146卷
关键词
Spectral theory; Long-range percolation; Integrated density of states; Uniform approximation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the spectrum of long-range percolation graphs. The underlying geometry is given in terms of a finitely generated amenable group. We prove that the integrated density of states (IDS) or spectral distribution function can be approximated uniformly in the energy variable. This result is already new for percolation on ℤd. Using this, we are able to characterize the set of discontinuities of the IDS.
引用
收藏
页码:1156 / 1183
页数:27
相关论文
共 58 条
  • [1] Adachi T.(1993)A note on the Følner condition for amenability Nagoya Math. J. 131 67-74
  • [2] Adachi T.(1993)Density of states in spectral geometry Comment. Math. Helv. 68 480-493
  • [3] Sunada T.(1987)Sharpness of the phase transition in percolation models Commun. Math. Phys. 108 489-526
  • [4] Aizenman M.(2008)Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs J. Stat. Phys. 130 983-1009
  • [5] Barsky D.J.(2009)Semicircle law for random matrices of long-range percolation model Random Oper. Stoch. Equ. 17 1-35
  • [6] Antunović T.(2009)Asymptotic properties of random matrices of long-range percolation model Random Oper. Stoch. Equ. 17 295-341
  • [7] Veselić I.(1986)On the density of states for the quantum percolation problem J. Phys. A 19 L1173-L1177
  • [8] Ayadi S.(2003)Approximating Commun. Pure Appl. Math. 56 839-873
  • [9] Ayadi S.(2007)-invariants, and the Atiyah conjecture J. Funct. Anal. 253 515-533
  • [10] Chayes J.T.(2008)Uniform existence of the integrated density of states for random Schrödinger operators on metric graphs over J. Math. Phys. 49 235-243