Scattering threshold for the focusing coupled Schrödinger system revisited

被引:0
作者
Tarek Saanouni
机构
[1] Qassim University,Department of Mathematics, College of Science and Arts in Uglat Asugour
[2] University of Tunis El Manar,undefined
[3] Faculty of Science of Tunis,undefined
[4] LR03ES04 partial differential Equations and applications,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 2021年 / 28卷
关键词
Nonlinear Schrödinger system; Ground state; Global existence; Scattering; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
This note investigates the coupled Schrödinger system iu˙j+Δuj=-∑k=1majk|uk|p|uj|p-2uj.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i\dot{u}_j +\Delta u_j= -\left( \sum \nolimits _{k=1}^{m}a_{jk}|u_k|^p\right) |u_j|^{p-2}u_j. \end{aligned}$$\end{document}Indeed, beyond the mass-energy threshold given in Saanouni (Appl Anal, 2020. https://doi.org/10.1080/00036811.2020.1808201), a scattering versus finite time blow-up dichotomy is obtained in the mass super-critical and energy sub-critical regime. Moreover, one extends the previous work [18] to the non-radial case.
引用
收藏
相关论文
共 32 条
[1]  
Akhmediev N(1999)Partially coherent solitons on a finite background Phys. Rev. Lett. 82 2661-1250
[2]  
Ankiewicz A(2008)Scattering for the non-radial 3D cubic nonlinear Schrödinger equation Math. Res. Lett. 15 1233-1840
[3]  
Duyckaerts T(2009)Dynamic of thresholds solutions for energy-critical NLS Geom. Funct. Anal. 18 1787-1615
[4]  
Holmer J(2015)Going beyond the threshold: scattering and blow-up in the focusing NLS equation Commun. Math. Phys. 334 1573-24
[5]  
Roudenko S(2017)Scattering for a 3D coupled nonlinear Schrödinger system J. Math. Phys. 58 071502-243
[6]  
Duyckaerts T(2005)Inhomogeneous Strichartz estimates J. Hyper. Differ. Equ. 2 1-172
[7]  
Merle F(2014)Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation Appl. Math. Res. Express 2 177-467
[8]  
Duyckaerts T(1973)Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II: normal dispersion Appl. Phys. Lett. 23 171-212
[9]  
Roudenko S(2008)A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation Commun. Math. Phys. 282 435-334
[10]  
Farah LG(2008)Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation Acta Math. 201 147-2080