Tensor Product of Evolution Algebras

被引:0
作者
Yolanda Cabrera Casado
Dolores Martín Barquero
Cándido Martín González
Alicia Tocino
机构
[1] Universidad de Málaga,Departamento de Matemática Aplicada, E.T.S. Ingeniería Informática
[2] Universidad de Málaga,Departamento de Álgebra, Geometría y Topología
[3] Universidad de Málaga,Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales
来源
Mediterranean Journal of Mathematics | 2023年 / 20卷
关键词
Evolution algebra; tensor product; 17A60; 17D92; 15A72; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
The starting point of this work is the fact that the class of evolution algebras over a fixed field is closed under tensor product. We prove that, under certain conditions, the tensor product is an evolution algebra if and only if every factor is an evolution algebra. Another issue arises about the inheritance of properties from the tensor product to the factors and conversely. For instance, nondegeneracy, irreducibility, perfectness and simplicity are investigated. The four-dimensional case is illustrative and useful to contrast conjectures, so we achieve a complete classification of four-dimensional perfect evolution algebras emerging as tensor product of two-dimensional ones. We find that there are four-dimensional evolution algebras that are the tensor product of two nonevolution algebras.
引用
收藏
相关论文
共 21 条
[1]  
Bustamante MD(2020)Determining when an Algebra is an evolution algebra Mathematics. 8 1349-342
[2]  
Mellon P(2014)On evolution algebras Algebra Colloq. 21 331-593
[3]  
Velasco MV(2017)Classification of asexual diploid organisms by means of strongly isotopic evolution algebras defined over any field J. Algebra 472 573-517
[4]  
Casas JM(2018)Algebraic computation of genetic patterns related to three-dimensional evolution algebras Appl. Math. Comput. 319 510-842
[5]  
Ladra M(2019)The variety of two-dimensional algebras over an algebraically closed field Canad. J. Math. 71 819-1425
[6]  
Omirov BA(2010)Groebner Bases for Polynomial Systems with parameters J. Symbolic Comput. 45 1391-130
[7]  
Rozikov UA(1997)Algebraic structure of genetic inheritance Bull. Am. Mathe. Soc. 34 107-467
[8]  
Falcon OJ(2000)Determinants of block matrices Math. Gaz. 84 460-122
[9]  
Falcon RM(2006)Mathematical concepts of evolution algebras in non-Mendelian genetics Quasigroups Related Syst. 14 111-undefined
[10]  
Nunez J(undefined)undefined undefined undefined undefined-undefined