Relational Symplectic Groupoids

被引:0
作者
Alberto S. Cattaneo
Ivan Contreras
机构
[1] Universität Zürich Irchel,Institut Für Mathematik
[2] University of California,Department of Mathematics
来源
Letters in Mathematical Physics | 2015年 / 105卷
关键词
Primary 53D17; Secondary 70S05; 53D20; 70G45; symplectic groupoids; canonical relations; Poisson sigma models; Poisson structures;
D O I
暂无
中图分类号
学科分类号
摘要
This note introduces the construction of relational symplectic groupoids as a way to integrate every Poisson manifold. Examples are provided and the equivalence, in the integrable case, with the usual notion of symplectic groupoid is discussed.
引用
收藏
页码:723 / 767
页数:44
相关论文
共 19 条
[1]  
Aof M.(1992)The holonomy groupoid of a locally topological groupoid Top. Appl. 47 97-113
[2]  
Brown R.(1996)Foliations, locally Lie groupoids and holonomy Cah. Top. Geom. Diff. Cat. 37 61-71
[3]  
Brown R.(2004)Integration of twisted Dirac brackets Duke Math. J. 123 549-607
[4]  
Mucuk O.(2008)Deformation quantization and reduction Contemp. Math. 450 79-101
[5]  
Bursztyn H.(2014)Coisotropic submanifolds and dual pairs Lett. Math. Phys. 104 243-270
[6]  
Crainic M.(2003)Integrability of Lie brackets Ann. Math. (2) 157 575-620
[7]  
Weinstein A.(2004)Integrability of Poisson brackets J. Diff. Geom. 66 71-137
[8]  
Zhu C.(1990)Groupödes symplectiques et troisième théorème de Lie non linéaire Lect. Notes Math. 1416 39-74
[9]  
Cattaneo A.S.(2008)A groupoid approach to quantization J. Symplectic Geom. 6 61-125
[10]  
Cattaneo A.S.(2006)Integrating Poisson manifolds via stacks Trav. Math. 15 285-297