Stark points and the Hida–Rankin p-adic L-function

被引:0
作者
Daniele Casazza
Victor Rotger
机构
[1] Université de Bordeaux,Departament de Matemàtica Aplicada II
[2] Universitat Politécnica de Catalunya,undefined
[3] Universitat Politècnica de Catalunya,undefined
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Elliptic curves; Birch and Swinnerton-Dyer conjecture; Special values; p-Adic modular forms; Elliptic units; 11G05; 11G40; 11F67; 11F33; 11G16;
D O I
暂无
中图分类号
学科分类号
摘要
This article is devoted to the elliptic Stark conjecture formulated by Darmon (Forum Math Pi 3:e8, 2015), which proposes a formula for the transcendental part of a p-adic avatar of the leading term at s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document} of the Hasse–Weil–Artin L-series L(E,ϱ1⊗ϱ2,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(E,\varrho _1\otimes \varrho _2,s)$$\end{document} of an elliptic curve E/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E/\mathbb {Q}$$\end{document} twisted by the tensor product ϱ1⊗ϱ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _1\otimes \varrho _2$$\end{document} of two odd 2-dimensional Artin representations, when the order of vanishing is two. The main ingredient of this formula is a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document}p-adic regulator involving the p-adic formal group logarithm of suitable Stark points on E. This conjecture was proved by Darmon (Forum Math Pi 3:e8, 2015) in the setting where ϱ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _1$$\end{document} and ϱ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _2$$\end{document} are induced from characters of the same imaginary quadratic field K. In this note, we prove a refinement of this result that was discovered experimentally by Darmon (Forum Math Pi 3:e8, 2015, [Remark 3.4]) in a few examples. Namely, we are able to determine the algebraic constant up to which the main theorem of Darmon (Forum Math Pi 3:e8, 2015) holds in a particular setting where the Hida–Rankin p-adic L-function associated to a pair of Hida families can be exploited to provide an alternative proof of the same result. This constant encodes local and global invariants of both E and K.
引用
收藏
页码:451 / 473
页数:22
相关论文
共 42 条
  • [1] Bertolini M(2014)Kato’s Euler system and rational points on elliptic curves I: a p-adic Beilinson formula Isr. J. Math. 199 163-188
  • [2] Darmon H(2013)Generalised Heegner cycles and Duke Math J. 162 1033-1148
  • [3] Bertolini M(2012)-adic Rankin L-series Pac. J. Math. 260 261-303
  • [4] Darmon H(2015)p-Adic Rankin L-series and rational points on CM elliptic curves J. Algebraic Geom. 24 355-378
  • [5] Prasanna K(2015)Beilinson-Flach elements and Euler systems I: syntomic regulators and J. Algebraic Geom. 24 569-604
  • [6] Bertolini M(2006)-adic Rankin L-series Ann. Math. 163 301-346
  • [7] Darmon H(2015)Beilinson-Flach elements and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-series Forum Math. Pi 3 e8-95
  • [8] Prasanna K(2006)Elliptic units for real quadratic fields Isr. J. Math. 153 319-354
  • [9] Bertolini M(2014)Stark points and p-adic iterated integrals attached to modular forms of weight one Ann. Scie. de l’Ecol. Norm. Supér. 47 779-832
  • [10] Darmon H(1980)The efficient calculation of Stark-Heegner points via overconvergent modular symbols Invent. Math. 57 83-95