NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data

被引:0
作者
Yingtao Bi
Ramana V Davuluri
机构
[1] Molecular and Cellular Oncogenesis Program,Center for Systems and Computational Biology
[2] The Wistar Institute,undefined
来源
BMC Bioinformatics | / 14卷
关键词
Posterior Distribution; Prior Distribution; Read Count; Dispersion Parameter; Differential Expression Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Temporal progress of gene expression analysis with RNA-Seq data: A review on the relationship between computational methods
    Costa-Silva, Juliana
    Hungria, Mariangela
    Domingues, Douglas S.
    Menotti, David
    Lopes, Fabricio Martins
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 86 - 98
  • [42] Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies
    Guo, Xiya
    Ning, Jin
    Chen, Yuanze
    Liu, Guoliang
    Zhao, Liyan
    Fan, Yue
    Sun, Shiquan
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (02) : 95 - 109
  • [43] PairedFB: a full hierarchical Bayesian model for paired RNA-seq data with heterogeneous treatment effects
    Bian, Yuanyuan
    He, Chong
    Hou, Jie
    Cheng, Jianlin
    Qiu, Jing
    BIOINFORMATICS, 2019, 35 (05) : 787 - 797
  • [44] BEAVR: a browser-based tool for the exploration and visualization of RNA-seq data
    Perampalam, Pirunthan
    Dick, Frederick A.
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [45] Blind spots of quantitative RNA-seq: the limits for assessing abundance, differential expression, and isoform switching
    Hubert Rehrauer
    Lennart Opitz
    Ge Tan
    Lina Sieverling
    Ralph Schlapbach
    BMC Bioinformatics, 14
  • [46] Phylogenomic Distance Method for Analyzing Transcriptome Evolution Based on RNA-seq Data
    Gu, Xun
    Zou, Yangyun
    Huang, Wei
    Shen, Libing
    Arendsee, Zebulun
    Su, Zhixi
    GENOME BIOLOGY AND EVOLUTION, 2013, 5 (09): : 1746 - 1753
  • [47] A system level analysis of gastric cancer across tumor stages with RNA-seq data
    Wu, Jun
    Zhao, Xiaodong
    Lin, Zongli
    Shao, Zhifeng
    MOLECULAR BIOSYSTEMS, 2015, 11 (07) : 1925 - 1932
  • [48] Modeling Exon-Specific Bias Distribution Improves the Analysis of RNA-Seq Data
    Liu, Xuejun
    Zhang, Li
    Chen, Songcan
    PLOS ONE, 2015, 10 (10):
  • [49] Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline
    Rahmatallah, Yasir
    Emmert-Streib, Frank
    Glazko, Galina
    BRIEFINGS IN BIOINFORMATICS, 2016, 17 (03) : 393 - 407
  • [50] Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates
    Yoon, Sora
    Kim, Seon-Young
    Nam, Dougu
    PLOS ONE, 2016, 11 (11):