Shape-Preserving C2 Functional Interpolation via Parametric Cubics

被引:0
作者
P. Lamberti
C. Manni
机构
[1] University of Torino,Department of Mathematics
来源
Numerical Algorithms | 2001年 / 28卷
关键词
interpolation; shape-preserving; parametric curves;
D O I
暂无
中图分类号
学科分类号
摘要
The paper proposes a method for the construction of a shape preserving C2 function interpolating a given set of data. The constructed interpolant is a parametric cubic curve. The shape of the curve can be easily controlled via tension parameters which have an immediate geometric interpretation. The approximation order is investigated and numerical examples are presented.
引用
收藏
页码:229 / 254
页数:25
相关论文
共 27 条
[1]  
Akima H.(1970)A new method of interpolation and smooth curve fitting based on local procedures J. Assoc. Comput. Mech. 17 589-602
[2]  
Costantini P.(1986)On monotone and convex spline interpolation Math. Comput. 46 203-214
[3]  
Costantini P.(1988)An algorithm for computing shape-preserving interpolating splines of arbitrary degree J. Comput. Appl. Math. 22 89-136
[4]  
Costantini P.(2000)Curve and surface construction using variable degree polynomial splines Comp. Aided Geom. Design 17 419-446
[5]  
Delbourgo R.(1983) rational quadratic spline interpolation to monotonic data IMA J. Numer. Anal. 3 141-152
[6]  
Gregory J.A.(1989)Nonnegativity, monotonicity or convexity-preserving cubic and quintic Hermite interpolation Math. Comput. 52 471-494
[7]  
Dougherty R.L.(1980)Monotone piecewise cubic interpolation SIAM J. Numer. Anal. 17 238-246
[8]  
Edelman A.(1997)Behaviour of exponential splines as tensions increase without bound J. Approx. Theory 89 289-307
[9]  
Hyman J.M.(1993)Accurate monotone cubic interpolation SIAM J. Numer. Anal. 30 57-101
[10]  
Fritsch F.N.(1990)Convexity-preserving polynomial splines of non-uniform degree IMA J. Numer. Anal. 10 223-234