Characterization of Deferred Statistical Convergence of Order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} for Positive Linear Operators and Application to Generalized Bernstein Polynomials

被引:0
作者
P. N. Agrawal
Behar Baxhaku
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
[2] University of Pristina “Hasan Prishtina”,Department of Mathematics
关键词
Generalized Bernstein polynomials; Deferred statistical convergence; Modulus of continuity; 41A10; 41A25; 41A30; 26A15;
D O I
10.1007/s40995-024-01590-3
中图分类号
学科分类号
摘要
In the present paper, we establish the Korovkin type theorems concerning positive linear operators defined for functions on [a, b] and also for functions on [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}, via deferred statistical convergence of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}, (0<α≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<\alpha \le 1)$$\end{document}. Further, we illustrate the application of our study to the generalized Bernstein polynomials introduced by Cao (J Math Anal Appl 209:140–146, 1997) and furnish an example to show that our Theorem 3 is a non-trivial generalization of the classical Korovkin type theorem.
引用
收藏
页码:453 / 461
页数:8
相关论文
共 76 条
  • [1] Agrawal PN(2021)On Math Methods Appl Sci 44 5989-6004
  • [2] Baxhaku B(2023)-analogue of a parametric generalization of Baskakov operators Math Methods Appl Sci 46 4449-4465
  • [3] Shukla R(2022)Characterization of deferred type statistical convergence and P-summability method for operators: Applications to q-Lagrange–Hermite operator J Math Inequal 16 1005-1028
  • [4] Agrawal PN(2022)Deferred statistical convergence and power series summability method for J Numer Anal Approx Theory 51 3-36
  • [5] Baxhaku B(2022)-Laguerre polynomials operator Adv Stud: Euro-Tbilisi Math J 15 151-166
  • [6] Shukla R(2022)On the rate of convergence of modified Commun Fac Sci Univ Ank Ser A1 Math Stat 71 407-421
  • [7] Agrawal PN(2022)-Bernstein operators based on J Inequal Appl 2022 26-64
  • [8] Baxhaku B(1986)-integers Bull Austral Math Soc 34 53-108
  • [9] Singh S(1988)On a Stancu form Szász–Mirakjan–Kantorovich operators based on shape parameter Approx Theory Its Appl 4 95-380
  • [10] Agrawal PN(2017)Approximation by Szász–Mirakjan–Durrmeyer operators based on shape parameter Turk J Math 41 368-4255