Polar functions of multiparameter bifractional Brownian sheets

被引:0
作者
Zhen-long Chen
机构
[1] Zhejiang Gongshang University,College of Statistics and Mathematics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2009年 / 25卷
关键词
Bifractional Brownian sheet; polar function; Hausdorff dimension; packing dimension; capacity; 60G15; 60G17;
D O I
暂无
中图分类号
学科分类号
摘要
Let BH,K = {BH,K(t), t ∈, ℝN+N} be an (N, d)-bifractional Brownian sheet with Hurst indices H = (H1, …, HN) ∈,(0, 1)N and K = (K1, …, KN) ∈, (0, 1]N. The characteristics of the polar functions for BH,K are investigated. The relationship between the class of continuous functions satisfying the Lipschitz condition and the class of polar-functions of BH,K is presented. The Hausdorff dimension of the fixed points and an inequality concerning the Kolmogorov’s entropy index for BH,K are obtained. A question proposed by LeGall about the existence of no-polar, continuous functions statisfying the Hölder condition is also solved.
引用
收藏
页码:255 / 272
页数:17
相关论文
共 34 条
[11]  
Istas J.(1988)Sur les function polaires pour les mouvement browien Séminaire de Probabilités de Strasbourg 22 186-412
[12]  
Benson D.A.(2002)A most probable path approach to queueing systems with general Gaussian input Comp. Networks 40 399-856
[13]  
Meerschaert M.M.(2006)On the bi-fractional Brownian motion Stoch. Process. Appl. 5 830-500
[14]  
Baeumer B.(1985)Quelques propriétés géométriques de certains processus gaussiens C. R. Acad. Sc. Paris (Série I) 300 497-74
[15]  
Scheffler H.P.(1982)Two definitions of fractional dimension Math. Proc. Cambridge Phil. Soc. 91 57-1052
[16]  
Bonami A.(2007)Sample path properties of bifractional Brownian motion Bernoulli 14 1023-226
[17]  
Estrade A.(2002)Local times of fractional Brownian sheets Probab. Th. Rel. Fields 124 204-64
[18]  
Chen Z.L.(1999)The intersection and the polar functions of nondegenerate diffusion processes J. Sys. Sci. and Math. Scis. 19 56-undefined
[19]  
Cheridito P.(undefined)undefined undefined undefined undefined-undefined
[20]  
Graversen S.E.(undefined)undefined undefined undefined undefined-undefined