Polar functions of multiparameter bifractional Brownian sheets

被引:0
作者
Zhen-long Chen
机构
[1] Zhejiang Gongshang University,College of Statistics and Mathematics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2009年 / 25卷
关键词
Bifractional Brownian sheet; polar function; Hausdorff dimension; packing dimension; capacity; 60G15; 60G17;
D O I
暂无
中图分类号
学科分类号
摘要
Let BH,K = {BH,K(t), t ∈, ℝN+N} be an (N, d)-bifractional Brownian sheet with Hurst indices H = (H1, …, HN) ∈,(0, 1)N and K = (K1, …, KN) ∈, (0, 1]N. The characteristics of the polar functions for BH,K are investigated. The relationship between the class of continuous functions satisfying the Lipschitz condition and the class of polar-functions of BH,K is presented. The Hausdorff dimension of the fixed points and an inequality concerning the Kolmogorov’s entropy index for BH,K are obtained. A question proposed by LeGall about the existence of no-polar, continuous functions statisfying the Hölder condition is also solved.
引用
收藏
页码:255 / 272
页数:17
相关论文
共 34 条
[1]  
Addie R.(2002)Performance formulae for queues with Gaussian input European Trans. Telecommunications 13 183-196
[2]  
Mannersalo P.(1999)Possible long-range dependence in fractional random fields J. Statist. Plann. Inference 80 95-110
[3]  
Norros I.(2005)Asymptotic properties and Hausdorff dimensions of fractional Brownian sheet J. Fourier Anal. Appl. 11 407-439
[4]  
Anh V.V.(2000)Identification of the hurst exponent of a Step multifractional Brownian motion Statistical Inference for Stochastic Processes 13 101-111
[5]  
Angulo J.M.(2006)Aquifer operator-scaling and the effect on solute mixing and dispersion Water Resour. Res. 42 W01415-236
[6]  
Ruiz-Medina M.D.(2003)Anisotropic analysis of some Gaussian models J. Fourier Anal. Appl. 9 215-516
[7]  
Ayache A.(1995)Polar functions for Brownian sheets J. Math.(PRC) 15 509-68
[8]  
Xiao Y.(2004)Gaussian moving averages, semimartingales and option pricing Stochastic Process. Appl. 109 47-270
[9]  
Benassi A.(1982)Polar-functions for Brownian motion Z. Wahrsch. Verw Gebiete. 61 261-201
[10]  
Bertrandet P.(2003)An example of infinite dimensional quasi-helix Contemp. Math. 336 195-189