Weighted Variational Inequalities for Singular Integrals on Spaces of Homogeneous Type

被引:0
作者
Hongwei Huang
Dongyong Yang
Feng Zhang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Variation; Oscillation; Singular integral; weight; -space; 42B20; 42B35; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let VqK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{q}K$$\end{document}, q∈(2,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (2,\infty )$$\end{document}, be the variation operator of a family truncated operators of a singular integral K on an RD-space (X,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,d,\mu )$$\end{document} with additional layer decay property. Under the assumption that the kernel of K satisfies a Dini condition and VqK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{q}K$$\end{document} is bounded on Lp0(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p_{0}}(\mu )$$\end{document} for some p0∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{0}\in (1,\infty )$$\end{document}, the authors obtain the boundedness of VqK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{q}K$$\end{document} on Lp(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(w)$$\end{document} for w∈Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in A_{p}$$\end{document} and from L1(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}(w)$$\end{document} to L1,∞(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1,\infty }(w)$$\end{document} for w∈A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in A_{1}$$\end{document}. These results also hold for oscillation operators of K. As applications, weighted boundedness of variations and oscillations for some known singular integrals are provided.
引用
收藏
相关论文
共 100 条
[1]  
Aimar H(1985)Singular integrals and approximate identities on spaces of homogeneous type Trans. Am. Math. Soc. 292 135-153
[2]  
Auscher P(2013)Orthonormal bases of regular wavelets in spaces of homogeneous type Appl. Comput. Harmon. Anal. 34 266-296
[3]  
Hytönen T(2007)Riesz transforms related to Bessel operators Proc. R. Soc. Edinb. Sect. A 137 701-725
[4]  
Betancor JJ(1989)Pointwise ergodic theorems for arithmetic sets Inst. Hautes Études Sci. Publ. Math. 69 5-45
[5]  
Fariña JC(2000)Oscillation and variation for the Hilbert transform Duke Math. J. 105 59-83
[6]  
Buraczewski D(2003)Oscillation and variation for singular integrals in higher dimensions Trans. Am. Math. Soc. 355 2115-2137
[7]  
Martínez T(2022)Boundedness of paraproducts on spaces of homogeneous type I Appl. Anal. 101 2144-2169
[8]  
Torrea JL(2022)Boundedness of paraproducts on spaces of homogeneous type II Appl. Anal. 101 2170-2196
[9]  
Bourgain J(2018)Weighted jump and variational inequalities for rough operators J. Funct. Anal. 274 2446-2475
[10]  
Campbell JT(2018)Compactness of Riesz transform commutator associated with Bessel operators J. Anal. Math. 135 639-673