Synchronization and chaos control by quorum sensing mechanism

被引:0
作者
Liuxiao Guo
Manfeng Hu
Zhenyuan Xu
Aihua Hu
机构
[1] Jiangnan University,School of Science
来源
Nonlinear Dynamics | 2013年 / 73卷
关键词
Synchronization; Quorum sensing; Chaotic oscillators; Collective behavior;
D O I
暂无
中图分类号
学科分类号
摘要
Diverse rhythms are generated by thousands of oscillators that somehow manage to operate synchronously. By using mathematical and computational modeling, we consider the synchronization and chaos control among chaotic oscillators coupled indirectly but through a quorum sensing mechanism. Some sufficient criteria for synchronization under quorum sensing are given based on traditional Lyapunov function method. The Melnikov function method is used to theoretically explain how to suppress chaotic Lorenz systems to different types of periodic oscillators in quorum sensing mechanics. Numerical studies for classical Lorenz and Rössler systems illustrate the theoretical results.
引用
收藏
页码:1253 / 1269
页数:16
相关论文
共 70 条
[1]  
Perora L.M.(1990)Synchronization in chaotic systems Phys. Rev. Lett. 64 821-824
[2]  
Carroll T.L.(2008)Hölder continuity of two types of generalized synchronization manifold Chaos 18 875-882
[3]  
Guo L.(2010)Complete synchronization of chaotic complex nonlinear systems with uncertain parameters Nonlinear Dyn. 62 1393-1403
[4]  
Xu Z.(2012)Impulsive pinning complex dynamical networks and applications to firing neuronal synchronization Nonlinear Dyn. 69 479-487
[5]  
Mahmoud G.M.(2012)Adaptive feedback control and synchronization of non-identical chaotic fractional order systems Nonlinear Dyn. 60 4067-4072
[6]  
Mahmoud E.E.(2008)Adaptive projective synchronization with different scaling factors in networks Chin. Phys. B 17 613-619
[7]  
Zhou J.(2003)Synchronization of weakly stable oscillators and semiconductor laser arrays Europhys. Lett. 61 404-407
[8]  
Wu Q.(1996)Synchronization transitions in a disordered Josephson series array Phys. Rev. Lett. 76 103-197
[9]  
Xiang L.(2000)The control of chaos: theory and applications Phys. Rep. 329 365-370
[10]  
Odibat Z.M.(2002)Synchronization of a unified chaotic system and the application in secure communication Phys. Lett. A 305 219-238