Quantum verifiable protocol for secure modulo zero-sum randomness

被引:0
作者
Masahito Hayashi
Takeshi Koshiba
机构
[1] Southern University of Science and Technology,Shenzhen Institute for Quantum Science and Engineering
[2] International Quantum Academy (SIQA),Guangdong Provincial Key Laboratory of Quantum Science and Engineering
[3] Southern University of Science and Technology,Graduate School of Mathematics
[4] Nagoya University,Faculty of Education and Integrated Arts and Sciences
[5] Waseda University,Quantum Computing Center
[6] Keio University,undefined
来源
Quantum Information Processing | / 21卷
关键词
Secure multiparty computation; Modulo summation; Quantum verification; Collusion resistance; Self-testing;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new cryptographic resource, secure modulo zero-sum randomness, as a resource to implement a task of secure modulo summation, and its quantum protocol. Secure modulo summation is the calculation of modulo summation Y1+⋯+Ym\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_1+\cdots + Y_m$$\end{document} when m players have their individual variables Y1,…,Ym\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_1,\ldots , Y_m$$\end{document} with keeping the secrecy of the individual variables. Secure modulo zero-sum randomness is a set of m variables X1,…,Xm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1, \ldots , X_m$$\end{document} held by m players that satisfy the zero sum condition X1+⋯+Xm=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1+\cdots + X_m=0$$\end{document} with a certain security condition. This paper explains the relation between these two concepts and proposes a quantum verifiable protocol for secure modulo summation. The advantage for quantum protocol is the verifiability based on self-testing, which does not need to trust measurement devices and can be realized by using a statistical concept, significance level, while any classical method needs to trust several components of the protocol. Then, we propose various cryptographic applications for secure modulo zero-sum randomness. We also compare our quantum verifiable protocol with the conventional method for secure modulo summation.
引用
收藏
相关论文
共 117 条
[1]  
Chor B(1993)A communication-privacy tradeoff for modular addition Inf. Process. Lett. 45 205-210
[2]  
Kushilevitz E(1995)The privacy of dense symmetric functions Comput. Complex. 5 43-59
[3]  
Chor B(1995)Visual cryptography, advances in cryptology Eurocrypt Proc. LNCS 950 1-2
[4]  
Shani N(1987)Encryption of pictures and shapes by random grids Opt. Lett. 12 377-379
[5]  
Naor M(2013)Blind quantum computation for Alice who does only measurements Phys. Rev. A 87 050301(R)-613
[6]  
Shamir A(2015)Verifiable measurement-only blind quantum computing with stabilizer testing Phys. Rev. Lett. 115 220502-47
[7]  
Kafri O(2012)Demonstration of blind quantum computing Science 335 303-5232
[8]  
Keren E(2013)Experimental verification of quantum computation Nat. Phys. 9 727-2603
[9]  
Morimae T(2016)Continuous-variable quantum computing on encrypted data Nat. Commun. 7 13795-1987
[10]  
Fujii K(2017)Experimental blind quantum computing for a classical client Phys. Rev. Lett. 119 273-30