Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion

被引:0
作者
Yves Meyer
Fabrice Sellan
Murad S. Taqqu
机构
[1] Ecole Normale Supérieure de Cachan,Département de Mathématiques
[2] Matra Systèmes et Information,Department of Mathematics and Statistics
[3] Laboratoire Analyse et Modeles Stochastiques,undefined
[4] Boston University,undefined
来源
Journal of Fourier Analysis and Applications | 1999年 / 5卷
关键词
Fractional ARIMA; midpoint displacement technique; fractional Gaussian noise; fractional derivative; generalized functions; self-similarity; Primary 60G18; secondary 41A58; 60F15.;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an almost sure convergent expansion of fractional Brownian motion in wavelets which decorrelates the high frequencies. Our approach generalizes Lévy's midpoint displacement technique which is used to generate Brownian motion. The low-frequency terms in the expansion involve an independent fractional Brownian motion evaluated at discrete times or, alternatively, partial sums of a stationary fractional ARIMA time series. The wavelets fill in the gaps and provide the necessary high frequency corrections. We also obtain a way of constructing an arbitrary number of non-Gaussian continuous time processes whose second order properties are the same as those of fractional Brownian motion.
引用
收藏
页码:465 / 494
页数:29
相关论文
共 17 条
[1]  
Abry P.(1996)The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation Appl. Comp. Harmonic Anal. 3 377-383
[2]  
Sellan F.(1994)A wavelet Monte Carlo method for turbulent diffusion with many spatial scales J. Comp. Phys. 113 82-111
[3]  
Elliott F.W.(1992)Wavelet analysis and synthesis of fractional Brownian motion IEEE Trans. Info. Theor. IT-38 910-917
[4]  
Majda A.J.(1994)On the self-similar nature of Ethernet traffic (Extended version) IEEE/ACM Trans. Networking 2 1-15
[5]  
Flandrin P.(1968)Fractional Brownian motions, fractional noises and applications SIAM Rev. 10 422-437
[6]  
Leland W.E.(1993)The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion IEEE Trans. Info. Theor. 39 260-264
[7]  
Taqqu M.S.(1995)On the use of fractional Brownian motion in the theory of connectionless networks IEEE J. Selected Areas Comm. 13 953-962
[8]  
Willinger W.(1991)On the wavelet transform of fractional Brownian motion IEEE Trans. Info. Theor. IT-37 1156-1158
[9]  
Wilson D.V.(1995)Synthèse de mouvements browniens fractionnaires à l'aide de la transformation par ondelettes Comptes Rendus de l'Académie des Sciences de Paris 321 351-358
[10]  
Mandelbrot B.B.(1976)Self-similar probability distributions Theor. Prob. Appl. 21 64-80