Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet

被引:0
|
作者
M. Bakhshzadmahmoudi
S. Jamali
E. Ahmadi
机构
[1] Nuclear Science and Technology Research Institute,Plasma and Nuclear Fusion Research School
来源
Colloid and Polymer Science | 2022年 / 300卷
关键词
Atmospheric pressure plasma; Dielectric barrier discharge; Hydrophilicity; Polystyrene;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we have studied the modification process of polystyrene surface by cold atmospheric pressure plasma jet to achieve a hydrophilic surface. For this purpose, dielectric barrier discharge plasma jet with different powers in short times with radio frequency power supply and argon plasma irradiation in atmospheric pressure were used. It was found that polystyrene surface changed from hydrophobic into hydrophilic after 20-s plasma irradiation and the wettability of surface increased with time. Surface evaluation was done by measuring the water contact angle of the samples before and after the modification. Fourier transform infrared spectroscopy showed the proof for the induction of oxygen-based functional groups in polystyrene when treated with the argon plasma. Plasma parameters were examined using optical emission spectroscopy, voltage-current (VI), and temperature measurements. The relation between plasma parameters and surface modification of the polymer is also discussed.
引用
收藏
页码:103 / 110
页数:7
相关论文
共 50 条
  • [1] Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet
    Bakhshzadmahmoudi, M.
    Jamali, S.
    Ahmadi, E.
    COLLOID AND POLYMER SCIENCE, 2022, 300 (02) : 103 - 110
  • [2] Cold Atmospheric Pressure Plasma Jet for the Improvement of Wettability of Polypropylene
    Baniya, Hom Bahadur
    Guragain, Rajesh Prakash
    Baniya, Binod
    Subedi, Deepak Prasad
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2020, 2020
  • [3] Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet
    Cheng, Cheng
    Zhang Liye
    Zhan, Ru-Juan
    SURFACE & COATINGS TECHNOLOGY, 2006, 200 (24): : 6659 - 6665
  • [4] Cold arc-plasma jet under atmospheric pressure for surface modification
    Toshifuji, J
    Katsumata, T
    Takikawa, H
    Sakakibara, T
    Shimizu, I
    SURFACE & COATINGS TECHNOLOGY, 2003, 171 (1-3): : 302 - 306
  • [5] Effect of VUV Radiation on Surface Modification of Polystyrene Exposed to Atmospheric Pressure Plasma Jet
    Zaplotnik, Rok
    Vesel, Alenka
    POLYMERS, 2020, 12 (05)
  • [6] Investigation of Surface Modification of Polystyrene by a Direct and Remote Atmospheric-Pressure Plasma Jet Treatment
    Vesel, Alenka
    Primc, Gregor
    MATERIALS, 2020, 13 (11)
  • [7] Surface modification of polymeric materials by cold atmospheric plasma jet
    Kostov, K. G.
    Nishime, T. M. C.
    Castro, A. H. R.
    Toth, A.
    Hein, L. R. O.
    APPLIED SURFACE SCIENCE, 2014, 314 : 367 - 375
  • [8] Side-on Surface Modification of Polystyrene with an Atmospheric Pressure Microplasma Jet
    Olabanji, Olumuyiwa T.
    Bradley, James W.
    PLASMA PROCESSES AND POLYMERS, 2012, 9 (09) : 929 - 936
  • [9] Experimental Study of Cold Atmospheric Pressure Plasma Jet and Its Application in the Surface Modification of Polypropylene
    Baniya, Hom Bahadur
    Guragain, Rajesh Prakash
    Baniya, Binod
    Subedi, Deepak Prasad
    REVIEWS OF ADHESION AND ADHESIVES, 2020, 8 (02): : 1 - 14
  • [10] Surface modification of polyethylene in an argon atmospheric pressure plasma jet
    Van Deynse, A.
    Cools, P.
    Leys, C.
    Morent, R.
    De Geyter, N.
    SURFACE & COATINGS TECHNOLOGY, 2015, 276 : 384 - 390